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Abstract

The ability to compare and manipulate probability distributions is a crucial
component of numerous machine learning (ML) algorithms. The statistics literature
provides a rich class of divergence functions to measure the discrepancy between two
probability distributions, such as the Kullback-Leibler (KL) divergence, the total
variation (TV) distance, or more generally the family of f -divergences. Yet, these
divergences rely on comparing density functions pointwise, and saturate or diverge
when the supports of the probability measures are disjoint. This fact can be a major
drawback in ML tasks involving discrete or high-dimensional measures, and calls for
more geometry-aware discrepancies. Optimal transport (OT) has proven to be a
well-suited alternative: starting from a cost function (e.g. a distance) on the space on
which measures are supported, OT consists in finding a mapping or coupling (i.e. a joint
law) between both measures that is optimal with respect to that cost. In other words,
OT naturally extends the ground cost between two points to a discrepancy function
between probability distributions, or point histograms, in the form of an optimization
problem. The fact that OT highly depends on the geometry of the distributions’ ground
space makes it particularly well suited to numerous ML applications, notably those
that consist in fitting a probability measure, such as generative modeling. Further, as a
consequence of its strong geometric component, OT is the object of a rich mathematical
theory regarding its metric and topological properties, on which ML practitioners can
rely to build and study their models.

Despite those advantages, the applications of OT in data sciences have long been
hindered by the mathematical and computational complexities of the underlying
optimization problem. Indeed, computing OT between discrete distributions amounts
to solving a large and expensive linear program, and results in quantities that are
not differentiable, which is impractical for ML gradient-based algorithms. Worse still,
in the general non-discrete case, there are no known efficient methods for estimating
optimal transport for moderate to high dimensions – the existing methods relying
on approximating PDEs, which is only tractable in low dimension. In particular,
the approach that consists in sampling from distributions and estimating OT using
sampled measures is doomed by the curse of dimensionality: the sample convergence
rate of OT is exponentially slow w.r.t. the dimension of the ambient space.

To alleviate those issues, two main approaches have been considered. The first
consists in regularizing the optimization problem in order to obtain more favorable
properties, such as smoothness or strict convexity. Approximations of OT divergences
can then be obtained at a much lower cost from those regularized problems. In
particular, entropic regularization yields couplings and discrepancies that are smooth
and differentiable, and that can be obtained efficiently using Sinkhorn’s algorithm or
stochastic optimization. Hence, it has become the prevailing choice of regularization.
The second approach consists in keeping the optimization problem as such, focusing
on particular cases that admit closed-form solutions or that can be efficiently solved.
A notable example is given by the optimal transport problem for 1D distributions,
which can be solved in closed form from the quantile functions of the distributions
under mild assumptions on the ground cost. In particular, discrete one-dimensional
OT has a much lower computational complexity, since it can be solved with a simple
call to a sorting procedure. For this reason, variants of OT relying on 1D projections
such as sliced Wasserstein (SW) distances have recently gained popularity in the ML
community. Likewise, in the multidimensional setting, Gaussian measures and their
elliptical generalizations are one of the very few instances for which OT is available
in closed form. In this particular case, OT defines the so-called Bures-Wasserstein
geometry, due to its links with the Riemannian Bures geometry on positive semi-definite
(PSD) matrices.

Even though closed-form instances of OT have been leveraged in recent works, the
guiding principle of this thesis is that there remains many research opportunities to
develop new algorithmic tools that can leverage or extend such closed forms.

Our thesis builds extensively on the Bures-Wasserstein geometry, with the aim
to use it as basic tool in data science applications. To do so, we consider settings in
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which the Bures-Wasserstein geometry is alternatively employed as a basic tool for
representation learning, enhanced using subspace projections, and smoothed further
using entropic regularization. In a first contribution, the Bures-Wasserstein geometry
is used to define embeddings as elliptical probability distributions. Our work extends
on the classical representation of data as vectors, i.e. points in Rd, to naturally
encode a notion of spread or uncertainty. To train those embeddings, we propose
numerical tools that leverage the underlying Riemannian structure of the Bures
metric. In the second contribution, we propose a new approach that exploits “classical”
(unregularized) OT, the Bures-Wasserstein geometry and projected OT. Indeed, we
prove the existence of transportation maps and plans that extrapolate Monge maps
restricted to lower-dimensional projections, and a characterization of such subspace-
optimal plans. We then show that subspace-optimal plans admit closed forms in the
case of Gaussian measures, that are linked to properties of the Bures metric. Our third
contribution consists in deriving closed forms for entropic OT, as well as unbalanced
entropic OT, between Gaussian measures scaled with a varying total mass. These
expressions constitute the first non-trivial closed forms for entropic OT, providing the
first continuous test case for the study of entropic OT and shedding some light on the
mass transportation/creation trade-off in unbalanced OT. Finally, in a last contribution,
entropic OT is leveraged to tackle missing data imputation in a non-parametric and
distribution-preserving way. Although this imputation is performed according to a
very intuitive criterion, we show in extensive experiments that our algorithms are
competitive with state-of-the-art methods.
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Résumé

Pouvoir manipuler et comparer des mesures de probabilité est essentiel pour de
nombreuses applications en apprentissage automatique (machine learning). Il existe
dans la littérature statistique une vaste classe de divergences permettant de mesurer la
différence entre deux distributions, comprenant par exemple la divergence de Kullback-
Leibler (KL), la distance de variation totale (VT), ou plus généralement la famille des
f -divergences. Cependant, ces divergences reposent sur la comparaison point-à-point
des fonctions de densité, et saturent ou divergent lorsque les supports des mesures sont
disjoints. Ceci peut être un inconvénient majeur pour les applications d’apprentissage
automatique qui nécessitent de comparer des mesures discrètes ou en haute dimension,
et appelle à l’emploi de divergences reposant sur des liens plus forts avec la géométrie des
espaces sous-jacents. Le transport optimal (TO) s’est avéré constituer une alternative
adaptée : partant d’une fonction de coût (e.g. une distance) définie sur l’espace sur
lequel les mesures sont supportées, le TO consiste à trouver une application ou un
couplage (i.e. une loi jointe) entre les deux mesures qui soit optimal par rapport à ce
coût. En d’autres termes, le TO est une extension naturelle de la fonction de coût de
base en une divergence entre mesures de probabilité, ou entre histogrammes de points,
sous la forme d’un problème d’optimisation. Du fait que le TO dépende fortement de
la géométrie de l’espace de base des distributions, il est particulièrement bien adapté à
de nombreuses applications en machine learning, notamment celles qui consistent à
apprendre une mesure de probabilité, tel qu’en apprentissage génératif. De plus, en
conséquence de son fort aspect géométrique, le transport optimal est l’objet d’une
riche théorie mathématique concernant ses propriétés métriques et topologiques, sur
laquelle la communauté de l’apprentissage automatique peut s’appuyer pour construire
et étudier ses modèles.

En dépit de ces avantages, l’emploi du TO pour les sciences des données a longtemps
été limité par les difficultés mathématiques et computationnelles liées au problème
d’optimisation sous-jacent. En effet, calculer le transport optimal entre deux mesures
discrètes revient à résoudre un coûteux programme linéaire de grande taille, et résulte
en des quantités qui ne sont pas différentiables, ce qui est inadapté aux algorithmes de
machine learning reposant sur la descente de gradient. Pire encore, dans le cas général
non discret, il n’existe pas de méthode efficace pour estimer le TO dans des dimensions
modérées ou élevées – les méthodes existantes s’appuyant sur l’approximation d’EDP,
ce qui n’est praticable qu’en basse dimension. En particulier, l’approche qui consiste
à échantillonner les distributions et à estimer le TO à partir des mesures empiriques
résultantes souffre du fléau de la dimension : la vitesse de convergence rapportée
au nombre d’échantillons est exponentiellement faible par rapport à la dimension de
l’espace ambiant.

Pour contourner ces problèmes, deux approches ont été proposées. La première
consiste à régulariser le problème d’optimisation afin de lui garantir de nouvelles
propriétés, telles qu’une meilleure régularité ou encore la stricte convexité. Des approxi-
mations des divergences du TO peuvent ensuite être obtenues à partir de ces problèmes
régularisés à un plus faible coût. Tout particulièrement, la régularisation entropique
fournit des couplages et des divergences réguliers et différentiables qui peuvent être
calculés efficacement à l’aide de l’algorithme de Sinkhorn, ou grâce à des méthodes
d’optimisation stochastique. De ce fait, l’entropie est devenue le choix de régularisation
le plus répandu. La seconde approche consiste quant à elle à conserver le problème d’op-
timisation dans sa forme initiale, en se concentrant sur des cas particuliers admettant
des solutions en forme close ou pouvant se résoudre efficacement. Un exemple primordial
est le cas du transport optimal en une dimension, qui peut être explicitement résolu à
partir des fonctions quantile des distributions, sous des hypothèses modérées portant
sur la fonction de coût utilisée. En particulier, le transport 1D entre distributions
discrètes a une faible complexité puisqu’il peut être calculé à l’aide d’un algorithme de
tri. Pour cette raison, des variantes du TO reposant sur des projections 1D telles que
les distances Wasserstein "tranchées" (sliced Wasserstein) ont récemment gagné en
popularité dans la communauté du ML. Dans le cas multi-dimensionnel, un second
exemple est celui des mesures gaussiennes et de leurs généralisations elliptiques qui
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constituent l’un des rares cas particuliers pour lesquels le TO admet une forme close.
Dans ce second cas, le TO définit la géométrie de Bures-Wasserstein et possède de forts
liens avec la géométrie riemannienne de Bures sur les matrices positives semi-définies
(PSD).

Bien que certains travaux récents se soient appuyés sur des formes closes du
transport optimal, le principe directeur de cette thèse est que de nombreuses pistes
de recherche restent à explorer afin de développer de nouveaux outils algorithmiques
permettant d’exploiter ou d’étendre de telles formes closes.

Cette thèse s’appuie tout particulièrement sur la géométrie de Bures-Wasserstein,
dans le but de l’utiliser comme outil de base pour des applications en science des données.
Pour ce faire, nous considérons des situations dans lesquelles la géométrie de Bures-
Wasserstein est tantôt utilisée comme un outil pour l’apprentissage de représentations,
étendue à partir de projections sur des sous-espaces, ou régularisée par un terme
entropique. Dans une première contribution, la géométrie de Bures-Wasserstein est
utilisée pour définir des plongements sous la forme de distributions elliptiques. Nos
travaux étendent la représentation classique sous forme de vecteurs, i.e. de points
dans Rd, pour encoder de manière naturelle une notion d’étendue ou d’incertitude.
Pour apprendre ces plongements, nous proposons de nouveaux outils numériques qui
exploitent la structure riemannienne sous-jacente de la métrique de Bures. Dans une
deuxième contribution, nous proposons une nouvelle approche qui exploite le transport
optimal non régularisé “classique”, la géométrie de Bures-Wasserstein et le TO projeté.
Plus précisément, nous prouvons l’existence de fonctions et couplages de transport qui
extrapolent des applications de Monge restreintes à des projections en faible dimension,
et fournissons une caractérisation de ces plans de transport “sous-espace optimaux”.
Nous montrons que ces plans sous-espace optimaux admettent des formes closes dans le
cas de mesures gaussiennes, liés à des propriétés de la métrique de Bures. La troisième
contribution de cette thèse consiste à obtenir des formes closes pour le transport
entropique ainsi que pour le transport entropique déséquilibré entre des mesures
gaussiennes non-normalisées. Ces formes closes constituent les premières expressions
non triviales pour le transport entropique déséquilibré, fournissant le premier exemple
dans le cas continu pour l’étude du transport entropique et illustrent l’arbitrage entre
transport et création de masse dans la transport déséquilibré. Finalement, dans une
dernière contribution nous utilisons le transport entropique pour imputer des données
manquantes de manière non-paramétrique et en préservant les distributions. Bien que
cette imputation soit effectuée selon un critère très intuitif, nous montrons dans des
expériences exhaustives que nos algorithmes sont compétitifs par rapport à l’état de
l’art.
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Outline and Contributions

Optimal transport (OT) is a two-century-old problem that has given birth to a rich
mathematical theory and to numerous applications, that are both still being very actively
developed to this date. OT was first formalized by Monge in his 1781 treatise. Motivated
by his observation of workers moving earth to build fortifications, Monge raised the problem
of optimally mapping two measures µ and ν of equal mass onto each other, according to
a cost that is equal to the distance traveled by the workers per unit of mass. Due to its
mathematical difficulty – most notably, the absence of guarantees regarding the existence
of a solution – very limited progress was made on Monge’s problem until the 1940s, when
Kantorovich proposed a relaxation: instead of optimizing on one-to-one maps that push
forward µ to ν, Kantorovich [1942] considers couplings, i.e. joint laws between µ and ν. This
new formulation has allowed the OT theory to flourish, as Kantorovich’s problem admits a
solution under much less restrictive conditions than Monge’s. In particular, it encompasses
the case of discrete distributions, which can be interpreted as a resource allocation problem
such as considered in [Tolstoi, 1930, Hitchcock, 1941]. This discrete version of Kantorovich’s
problem was numerically solved by Dantzig [1949], with further algorithmic refinements
starting from the 1950s with the development of the linear programming literature [Dantzig,
1951] and min-cost flow problems [Ford and Fulkerson, 1962, Goldberg and Tarjan, 1989,
Ahuja et al., 1993], closing a fecund phase in which OT became one of the foundational
problems of mathematical programming.

OT’s renaissance in mathematics. Starting from the late 1980s and succeeding to
the preluding works of Rachev and Rüschendorf [see Rachev and Rüschendorf, 1998, and
references therein], the mathematical aspects of OT were progressively better understood –
including the challenging Monge problem. In his seminal paper, Brenier [1987] proved the
existence of an optimal Monge map between measures that admit a density in the case of a
quadratic ground cost, and characterized this map as the unique transportation map that
is the gradient of a convex function. This fundamental result served as a building block for
many theoretical works on Monge maps. In particular, it allowed to reformulate Monge’s
problem as the Monge-Ampère PDE, which Caffarelli [1991] used to prove regularity
properties of the solutions in the quadratic case. McCann [1997] then introduced measure
interpolants that now bear his name and which constitute the optimal transport geodesic
between two measures according to the Wasserstein distance, defined by OT when the
ground cost is a distance to a power p ≥ 1. Observing that the space of measures endowed
with the Wasserstein distances shares key properties with manifolds has paved the way to
the seminal work of Jordan et al. [1998], who showed that the Fokker-Plank equation can
be recast as a Wasserstein proximal minimization scheme – known as the JKO scheme – of
a functional taking measures as arguments. This construction was perfected in [Ambrosio
et al., 2006], where a gradient flow theory generalizing that of Euclidean spaces was built
on the Wasserstein space. Further links with PDEs and fluid mechanics were developed
in [Benamou and Brenier, 2000], defining the so-called dynamic formulation of OT. These
works paved the way for decisive contributions by both Villani [2008] and Figalli et al.
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[2010] whose respective works on the Ricci curvature and isoperimetric inequalities, among
others, were recognized with Fields medals.

Optimal transport in data sciences. In parallel, in the early 2000s OT has begun
to appear in more applied domains such image processing, computer vision and machine
learning. Indeed, discrete OT was “rediscovered” in [Rubner et al., 2000] for image retrieval
tasks under the name of the earth mover’s distance (EMD). From then, it was put to
application in image processing and computer graphics [Rabin et al., 2011, Bonneel et al.,
2011, Haker et al., 2004], but its usage remained limited by its O(n3 log(n)) complexity
despite specialized solvers [Pele and Werman, 2009]. This issue was alleviated by the
addition of an entropic regularization term to Kantorovich’s problem by Cuturi [2013].
Entropic regularization not only ensures the uniqueness of the solution by strict convex-
ity, but also allows to solve the corresponding problem in O(n2) time using Sinkhorn’s
algorithm [Sinkhorn, 1964], and results in a differentiable divergence. Further, Solomon
et al. [2015] showed that for some domains and cost functions resulting in a separable
kernel (e.g. for measures on a 2D or 3D grid with a squared norm cost), fast convolution
techniques could be used to bring down the complexity to O(n1+1/D). In turn, these
results opened the way to a more widespread use in data sciences and machine learning. In
particular, Frogner et al. [2015] used entropic OT with relaxed marginal constraints as a
loss function for multilabel classification, building on a contribution of Kusner et al. [2015]
who proposed to compare documents by representing them as bags-of-words and using
OT between word embeddings in Rd. Remarkably, the renewed interest of the machine
learning community for optimal transport has led to applications not necessarily relying
on a regularized formulation, notably for domain adaptation [Courty et al., 2014, 2017],
generative modeling [Arjovsky et al., 2017], and distributionally robust learning [Esfahani
and Kuhn, 2018].

Modern OT challenges in machine learning. Yet, applications of OT to data sciences
are still hindered by several issues. In particular, the unfavorable statistical properties of OT
linked to its high sample complexity have been the object of much work lately. Weed and
Bach [2017] proved a sharp bound that shows that estimating Wasserstein distances requires
an exponential number of samples w.r.t. the intrinsic dimension of the set on which measures
are supported. Entropic regularization was shown to not only alleviate computational
issues, but also to yield better sample rates [Genevay et al., 2019]. Alternatively, further
refinements on Weed and Bach’s bound can be obtained by assuming that measures
differ in a low-dimensional subspace [Niles-Weed and Rigollet, 2019]. In the unregularized
setting, those results theoretically justify a recent trend that consists in using OT between
low-dimensional projections of measures to define measure discrepancies [Rabin et al.,
2011, Bonneel et al., 2015, Paty and Cuturi, 2019] that benefit from lower computational
costs, and hopefully better sample complexity. More generally, leveraging closed forms of
transportation maps and OT distances in particular cases is a promising approach to reduce
the computational and sample complexity, even the more so as methods for OT between
continuous measures are scarce. As an example, Flamary et al. [2019] proved favorable
sample complexity bounds for linear transportation maps, which encompass (but do not
restrict to) the case of Gaussian and elliptical distributions. The issue of the statistical and
computational complexity of OT is one of the aspects that the OT community is currently
addressing, but other promising directions regarding applications of OT are also being
investigated. As an example, it appeared in several works that the marginals constraints of
OT could be too restrictive for some applications [Schiebinger et al., 2019, Frogner et al.,
2015], which has led to the development of unbalanced optimal transport [Chizat, 2017],
where the constraints are replaced with penalties. Further, OT gradient flows were shown
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to constitute a key tool in analyzing the behavior of over-parameterized models [Chizat
and Bach, 2018, Chizat et al., 2020], which is a burning topic in ML.

Contributions of this thesis. This thesis, started in 2017, makes a few contributions
towards helping optimal transport theory overcome some of its well-documented computa-
tional and statistical drawbacks, and gain applicability in machine learning.

(i) In an initial work [Muzellec and Cuturi, 2018], we leveraged the fact that OT admits
a closed form between elliptical distributions (defining the so-called Bures-Wasserstein
geometry), to propose a new tool to embed complex data: rather than embed words
as vectors in Rd [Borg and Groenen, 2005, Maaten and Hinton, 2008], we proposed to
represent them as elliptical probability measures. In particular, this representation
allows to naturally encode the notion of uncertainty, which we showed to be of
particular interest for natural language processing (NLP) tasks. Proposing these
algorithms required investigating numerical methods to perform optimization using
the Riemannian structure of the Bures metric on PSD matrices.

From this starting point, we further investigated the use of the Bures-Wasserstein
geometry in conjunction with other approaches that were currently being considered in the
ML community to obtain better complexity.

(ii) We studied the problem of extrapolating transportation plans from maps defined
between the projections of measures on lower-dimensional subspaces [Muzellec and
Cuturi, 2019]. We showed the existence of such plans and provided a theoretical
characterization, from which we exhibited two particular instances that generalize the
Knothe-Rosenblatt transport [Knothe, 1957, Rosenblatt, 1952], and proved that they
admit closed forms between Gaussian measures that are linked to properties of the
Bures metric.

(iii) We proposed a last contribution on the topic of OT between elliptical distributions in
[Janati and Muzellec et al., 2020], in which we provided closed forms for entropic OT
and unbalanced entropic OT between Gaussian measures. Remarkably, these are, to
our knowledge, the first example of closed-form expressions for unbalanced entropic OT,
and they can now be used as a testbed for researchers wishing to investigate numerical
algorithms for (unbalanced) entropic OT (and more generally variants of Sinkhorn’s
algorithm). They also provide a case in which the mass transportation/destruction
trade-off in unbalanced OT can be characterized exactly.

(iv) Finally, the last contribution in this thesis focuses on an application of entropic OT to
imputing missing data [Muzellec et al., 2020]. This work relies on the simple intuition
that two random batches from the same dataset should have similar distributions. We
turned this criterion into a loss function using Sinkhorn divergences, and proposed
flexible methods that can alternatively fit a parametric imputation model, or perform
imputation without any parametric assumption on the underlying data distribution.

We now turn to a more detailed presentation of the chapters constituting this thesis. For
each chapter, we present related work, and sketch the contributions of this thesis.

Chapter 1: Optimal Transport Geometries

This chapter introduces the key concepts and results on optimal transport on which this
thesis builds upon, and, as such, does not introduce original contributions. Because of our
focus on ML applications, we state these results for measures supported on Rd that are
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either discrete or absolutely continuous (a.c.). Three OT “geometries” are introduced: the
original Monge-Kantorovich OT geometry, the Bures-Wasserstein geometry on elliptical
distributions, and the geometry of entropy-regularized OT.

Chapter 2 Chapter 3 Chapter 4 Chapter 5
Unregularized OT X X
Bures-Wasserstein X X X
Entropy-regularized OT X X

Table 1: Summary of the OT geometries used in the main chapters of this thesis.

Monge-Kantorovich Optimal Transport. This chapter starts with the presentation
of the optimal transport problem, which was initially introduced in Monge’s 1781 memoir.
Monge studied the problem of optimally mapping masses of earth represented by measures
µ and ν, according to the ground cost c(x, y) = ‖x− y‖:

inf
T :T]µ=ν

∫

Rd
c(x, T (x))dµ(x), (M)

where we denote T]µ = ν the fact that T pushes forward µ to ν, i.e. that ν(A) = µ(T−1(A))
for all measurable sets A.

Because this problem is mathematically challenging (in particular, the existence of
solutions is not guaranteed), Kantorovich introduced in 1942 the relaxed problem

inf
γ∈Π(µ, ν)

∫∫

Rd×Rd

c(x, y)dγ(x, y), (K)

where the transportation maps from (M) are replaced with couplings γ ∈ P(Rd × Rd), i.e.
probability measures having µ and ν as marginals. In particular, when the ground cost is a
distance to a power p ≥ 1, i.e. c(x, y) = dp(x, y), (K) defines the celebrated Wasserstein
distances.

After introducing problems (M) and (K), a collection of results based on [Santambrogio,
2015] concerning the existence of solutions to (M) and (K) and their links is recalled. In
particular, the celebrated Brenier theorem [Brenier, 1987] for the existence and characteri-
zation of Monge maps with a quadratic cost as the gradient of a convex function will play
a central role in the case of elliptical measures introduced in Section 2.

To conclude this section, the computational aspects of OT are presented. Those aspects,
which are crucial in a machine learning perspective, are discussed depending on the type of
measures that are involved - discrete, or absolutely continuous (a.c.). In particular, the
discrete case boils down to the linear program

OT(µ, ν) = min
P∈Rn×m+

P1m=a,PT1n=b

〈P, C〉, (D-OT)

where a ∈ ∆n,b ∈ ∆m are probability weight vectors and C = [c(xi, yj)]i=1,...,n,j=1,...,m

is the ground cost matrix. (D-OT) can be solved using the network simplex algorithm
with complexity O(nm(n+m) log(nm)) [see Ahuja et al., 1993, Peyré et al., 2019]. This
high computational cost can be mitigated in some particular cases and variants based on
1D transport. Indeed, in 1D the optimal transport map can be written as a monotone
map involving the cumulative distribution functions Fν , Fµ and their inverses, the quantile
functions:

T : x 7→ F [−1]
µ ◦ Fν(x).



13

As a consequence, in the discrete setting 1D OT can be solved in O(n log n) time by
sorting the supporting points of the distributions. Building on those properties, sliced OT
[Rabin et al., 2011] is defined as the expectation of OT on random 1D projections, and
Knothe-Rosenblatt couplings [Knothe, 1957, Rosenblatt, 1952] are built using a recursive
1D matching between conditional distributions.

Chapter 2 Chapter 3 Chapter 4 Chapter 5
Discrete-Discrete X
Continuous-Continuous X X X
1D & KR transport X

Table 2: Summary of the OT settings used in the main chapters of this thesis.

The two following sections are dedicated to settings in which OT enjoys particularly
favorable computational properties, namely OT for elliptical distributions, and entropic
regularization of OT.

The Bures-Wasserstein Geometry. The case of OT between Gaussian measures with
a quadratic cost is one of the very few settings in which Wasserstein distances and Monge
maps are available in closed form. This fact was independently discovered in several seminal
works [Dowson and Landau, 1982, Olkin and Pukelsheim, 1982, Givens et al., 1984]. This
exception is essentially due to the fact that the Brenier theorem proves the existence of
linear Monge maps, and serves as an essential tool to prove that the Wasserstein space of
Gaussian measures defines a Riemannian manifold [Takatsu, 2011].

In fact, most of these properties can be extended to the more general class of elliptical
distributions. Elliptically-contoured distributions can be seen as a generalization of Gaussian
distributions, either defined as having characteristic functions of the form eit

T cg(et
TCt)

(g = exp(− · /2) corresponding to Gaussian measures) as in [Cambanis et al., 1981], or
using a less compact definition based on density functions with an elliptical symmetry
as in [Gelbrich, 1990]. In his seminal paper, Gelbrich [1990] proves that the Wasserstein
distances between distributions from the same elliptical family µa,A, µb,B has the same
expression as for Gaussian measures (involving mean vectors a,b and covariance matrices
A,B)

W 2
2 (µa,A, µb,B) = ‖a− b‖2 + B2(A,B), (1)

where B2(A,B)
def
= TrA + TrB− 2Tr

(
A1/2BA1/2

)1/2 is the Bures metric for PSD matri-
ces [Bures, 1969, Bhatia et al., 2018], and so do Monge maps: T]µa,A = µb,B with

T : x→ A−
1
2

(
A

1
2 BA

1
2

)1
2

A−
1
2 (x− a) + b. (2)

The Bures metric is linked to a “maximum correlation” optimization problem [Olkin
and Pukelsheim, 1982] that allows to prove the joint convexity of the Bures metric and a
lower bound on the 2-Wasserstein distance between any two distributions with finite second
moments [Dowson and Landau, 1982]. The Riemannian structure of the Bures metric
on the PSD cone [Bhatia et al., 2018, Malagò et al., 2018] allows to derive Wasserstein
geodesics for elliptical distributions, and to characterize Wasserstein barycentres from a
fixed-point equation on PSD matrices [Agueh and Carlier, 2011, Bhatia et al., 2018], from
which an algorithm converging to this barycenter can be obtained [Álvarez-Esteban et al.,
2016].
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Entropic Regularization of Optimal Transport. In the general case, closed forms
for OT distances and couplings are not available. In the prevalent discrete setting, the
computational costs associated with solving (D-OT) along with the fact that OT(µ, ν)
is not differentiable can be prohibitive in many ML applications. Starting from [Cuturi,
2013], the prevailing approach to accommodate for these issues has been to add an entropic
regularization term to the Kantorovich problem:

OTε(µ, ν)
def
= inf

γ∈Π(µ, ν)

∫∫

Rd×Rd

c(x, y)dγ(x, y) + εKL(γ‖µ⊗ ν). (Ent-OT)

In the discrete setting, OTε defines a differentiable discrepancy, which can be efficiently
computed using Sinkhorn’s algorithm [Sinkhorn, 1964], at the price of no longer defining a
positive divergence. This discrepancy can be turned into a positive definite divergence by
subtracting debiasing terms to OTε. This defines the Sinkhorn divergence [Genevay et al.,
2018]

Sε(µ, ν)
def
= OTε(µ, ν)− 1

2
(OTε(µ, ν) + OTε(µ, ν)). (3)

When the ground cost c is positive definite, Sε is a differentiable, convex (but not jointly)
positive definite divergence which metrizes weak star convergence and retains the favorable
computational complexity of OTε [Feydy et al., 2019].

Alternative regularizations of optimal transport were considered in Blondel et al. [2018],
allowing to obtain sparse but differentiable OT plans - at the price of Sinkhorn’s algorithm
no longer applying. Further, Chizat [2017] extends regularization of OT to the unbalanced
OT problem, in which the constraints on coupling marginals are replaced with penalization
terms.

In Chapter 4, we elaborate on entropy-regularized OT and (entropic) unbalanced OT,
proving closed forms in the case of Gaussian measures.

Chapter 2: Generalizing Point Embeddings using the
Wasserstein Space of Elliptical Distributions

This chapter is based on [Muzellec and Cuturi, 2018].

Learning mathematical representations that can be conveniently manipulated for com-
plex objects is a challenging task with numerous applications in ML. While these represen-
tations have traditionally been in the form of vectors, i.e. points in Rk, we propose in this
work to extend these points to representations as elliptical probability measures, in the
Bures-Wasserstein geometry.

Related work. There exists a vast literature on the problem of obtaining low-dimensional
representations y1, y2, ..., yn ∈ Rk of complex, high-dimensional objects x1, x2, ..., xn living
in a space X . When the objects to be represented are themselves vectors in Rd, a
prevalent method, often used as a pre-processing step, is principal component analysis
(PCA) [Pearson, 1901]. More generally, when these objects are equipped with a distance
dX (xi, xj), embeddings are naturally sought so that the distances ‖yi − yj‖ are as close
as possible to dij

def
= dX (xi, xj). Closeness criteria include distortion1 [Johnson and

Lindenstrauss, 1984, Bourgain, 1985] or the stress
(∑

i 6=j(dij − ‖yi − yj‖)2/d2
ij

)1/2
as in

metric multidimensional scaling [De Leeuw, 1977, Borg and Groenen, 2005]. Several

1An embedding has distortion α if there exists r > 0 such that ∀i, j, r ≤ dij
‖yi−yj‖

≤ αr.
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approches have then refined these methods, departing from the original goal of finding
isometric embeddings to focus on notions of intrinsic dataset geometry [Tenenbaum et al.,
2000, Roweis and Saul, 2000, Hinton and Roweis, 2003, Maaten and Hinton, 2008]. Finally,
some tasks require to compute embeddings without the guidance of a ground distance or
similarity measure. This is notably the case in NLP, where word embeddings are computed
based on the co-occurence of similar words [Mikolov et al., 2013b, Pennington et al., 2014,
Bojanowski et al., 2017], for lack of a natural distance between words.

More recently, two distinct trends have emerged. The first (i) learns representations
in a latent space by minimizing reconstruction error [Hinton and Salakhutdinov, 2006,
Kingma and Welling, 2014, Tolstikhin et al., 2018]. The second (ii) seeks embeddings into
more “exotic” geometries, e.g. generalized MDS on the sphere [Maron et al., 2010], or in
hyperbolic spaces [Nickel and Kiela, 2017].

As part of the second trend (ii), probabilistic embeddings were proposed by Vilnis and
McCallum [2015]. This approach consists in representing objects as parametric probability
distributions over Rd, which extends the traditional representation in Rk as points that can
be seen as Dirac distributions. Vilnis and McCallum propose to embed words as Gaussian
measures in the geometry of the Kullback-Leibler divergence (KL), or of the expected
likelihood (`2) kernel [Jebara et al., 2004]. However, these geometries cannot naturally
extend point embeddings, as they saturate when measures are Diracs (to infinity or to a
constant value). Moreover, due to numerical stability issues linked to the KL divergence
between Gaussian measures, only Gaussian distributions with diagonal covariance matrices
have been considered in [Vilnis and McCallum, 2015]. In a concurrent work, Singh et al.
[2020] considered representing words as histograms over context words, based on pre-
computed word embeddings such as glove [Pennington et al., 2014]. Subsequent work
to ours considered embeddings in P(Rd) in the form of empirical distributions with fixed
support cardinality using entropy-regularized OT [Frogner et al., 2019]. Finally, let us
mention that our use of OT metrics to learn embeddings was inspired by the theoretical
results of Andoni et al. [2015], who showed that P(R3) equipped with the Wasserstein
distances is snowflake-universal2.

Contributions. The main contributions of this chapter concern the benefits of repre-
senting objects as elliptical distributions in the Bures-Wasserstein geometry, along with
practical tools and guidelines for optimization within this geometry.

(i) Representing objects as elliptical distributions in the Bures-Wasserstein
geometry: We propose to represent each object as an elliptical distribution µa,A using
a mean vectors a and a PSD covariance matrix A, and endow these representations
with the Bures-Wasserstein distance

W2(µa,A, µb,B) = ‖a− b‖2 + B2(A,B).

This representation has several benefits compared with Gaussian measures in the KL
or `2 geometry:

a. First, it seamlessly includes point embeddings as Dirac measures, which can
alternatively be seen as degenerate elliptical distributions with a 0 covariance
matrix. In particular, the Bures-Wasserstein distance between two degenerate
Dirac elliptical distributions is simply the Euclidean distance between their means:
W2(µa,0, µb,0) = ‖a− b‖2;

2i.e., it embedds dθX , θ ∈ (0, 1) with arbitrarily low distortion.
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b. Next, the proposed methods remain valid for any choice of representing elliptical
family, and not only Gaussian measures. In particular, this allows to represent
objects as uniform distributions over ellipsoids, which have compact supports and
are therefore more amenable to visualization;

c. Finally, used with the numerical tools we propose, the Bures distance is numerically
stable, which allows to use full covariance matrices (as opposed to diagonal covari-
ance matrices is previous works). This allows to make a fuller use of the dimension
d of the ambient space: with full covariance matrices, elliptical embeddings can
use up to d+ d(d+ 1)/2 scalar parameters, but diagonal elliptical embeddings are
limited to 2d.

(ii) Numerical tools and methods for optimization with Bures distances: We
provide numerical tools to optimize models based on Bures distances with gradient-
based methods. More precisely, we address two issues: (a.) computing and differen-
tiating the Bures distance and (b.) ensuring that matrices remain PSD throughout
gradient descent.

a. We leverage the fact that Newton-Schulz (NS) iterations [Higham, 2008] with a
suitable initialization simultaneously yield Monge maps TAB and their inverses
TBA to minimize the amount of NS runs required to compute and differentiate
Bures distances. Our method relies on the following Bures identities:

B2(A,B) = ‖A−TABA‖2F and ∇AB2(A,B) = Id −TAB.

By keeping the maps TAB in memory, this allows to compute gradients without re-
computing any matrix roots or inverses. In comparison, automatic differentiation
has a complexity equivalent to computing the distances again. An important
practical point is that all proposed manipulations are easily parallelizable on
GPUs.

b. We avoid any projection on the PSD cone by using a A = LLT parameterization
and optimizing on the L factor, which is free to take any value in Rd×d. Remarkably,
we show that Euclidean gradient descent on the L factor,

L← L− η∇L
1
2B

2(LLT ,B),

is equivalent to taking a step of size η along the geodesic from A = LLT to B:

CA→B(η) = [(1− η)Id + ηTAB]A[(1− η)Id + ηTAB].

In other words, a A = LLT parameterization is projection-free and allows to
emulate Riemannian optimization in the Bures geometry.

(iii) Applications to similarity and hypernymy representation with word em-
beddings: In large-scale experiments, we compute word embeddings from the ukWac
and WaCkypedia corpora [Baroni et al., 2009] by minimizing the Bures-Wasserstein
equivalent of the hinge loss [Vilnis and McCallum, 2015]:

∑

(w,c)∈R


M − [µw : νc] + 1

n

∑

c′∈N(w)

[µw : νc′ ]




+

,

where R is the set of word/context pairs co-occuring in a sliding window of a given
size and N(w) a random set of negative contexts for the word w, and

[µa,A : µb,B]
def
= 〈a, b〉+ F (A,B),
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where F (A,B)
def
= Tr(A1/2BA1/2)1/2 is the Bures fidelity (see Chapter 1). The

resulting 250K embeddings, trained on a 3 billion token dataset, are competitive
with then state-of-the-art skipgram embeddings [Mikolov et al., 2013b] and diagonal
Gaussian embeddings [Vilnis and McCallum, 2015] on similarity and entailment
benchmarks.

In a second experiment, we train embeddings on the WordNet dataset [Miller and
Charles, 1991] to encode hypernymy3 relations (constituting a DAG on nouns),
consistently beating the then state-of-the-art Poincaré embeddings [Nickel and Kiela,
2017] in link prediction tasks.

Chapter 3: Building Optimal Transport Plans on Subspace
Projections

This chapter is based on [Muzellec and Cuturi, 2019].

OT suffers from the curse of dimensionality. For this reason, discrepancies relying on
OT between lower-dimensional projections of measures have recently been considered. In
this chapter, we show how global transport maps and couplings can be extrapolated from a
Monge map between projected measures.

Related Work. In Rd, the Wasserstein distance between empirical measures over n sam-
ples converges at speed O(n−1/d) to the distance between the original distributions [Dudley,
1969, Fournier and Guillin, 2015]. At best, this rate can be improved if the distribution is
actually supported on a lower-dimensional surface [Weed and Bach, 2017] – in which case
the dimension parameter in the rate can be replaced with this intrinsic dimension parameter
– or can be turned to O(n−2/d) under some additional hypothesis [Chizat et al., 2020]. This
unfavorable sample complexity associated with a O(n3 log n) computational complexity has
led to approaches consisting in first projecting measures on lower-dimensional subspaces
before computing OT between projected measures. Most notably, sliced Wasserstein (SW)
distances [Rabin et al., 2011, Bonneel et al., 2015] average Wasserstein distances between
1D projections (see Section 1.2):

SWp
p(µ, ν)

def
=

∫

Sd
W p
p ((pθ)]µ, (pθ)]ν)dθ,

where pθ is the projection on the line of direction θ ∈ Rd. In the discrete setting, each
projected distance (and coupling) can be obtained via sorting in O(n log n) time. These
favorable runtimes, along with the fact that SW defines a metric between measures (although
distinct from the Wasserstein metric), has led to a recent spark of interest for VAE and
GAN applications [Deshpande et al., 2018, Wu et al., 2019]. Paty and Cuturi [2019]
extend projections to subspaces of dimension 1 ≤ k < d that are adversarially selected.
Extrapolating transportation maps defined in few dimensions is linked to Knothe-Rosenblatt
(KR) transport [Rosenblatt, 1952, Knothe, 1957], which defines a coupling between two
measures by recursively extending 1D transport maps. Carlier et al. [2009] shows that KR
transport can be obtained as the limit map with re-weighted quadratic costs, a result we
extend to extrapolations of k-dimensional maps.

Contributions. The previously cited approaches that rely on subspace projections allow
to define OT-based discrepancies, but do not provide transportation maps between the

3A is a hypernym of B if every B is a A, e.g. “mammal” is a hypernym of “dog”.
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original measures. In this chapter, we study how transportation maps and plans that
coincide with a given map S defined on a linear subspace E (with projection operator pE)
can be obtained. That is, we are interested in transportation plans γ (resp. maps T ) whose
projections γE = (pE , pE)]γ on that subspace E coincide with the optimal transportation
plan (IdE , S)]µE (resp. pE ◦ T = S ◦ pE).

(i) Subspace-optimal plans and maps: Given a Monge map S between two measures
µE and νE projected on a linear subspace E of Rd, we define global plans between
the original measures µ and ν that coincide with S on E : ΠE(µ, ν)

def
= {γ ∈ Π(µ, ν) :

γE = (IdE , S)]µE}. We prove the existence of such subspace-optimal plans, and
further characterize them using their disintegrations (i.e. their conditionals) on E×E:
denoting µxE the disintegration of µ on E⊥ × {xE}, any plan γ ∈ ΠE(µ, ν) is fully
characterized by the conditional couplings on the graph of S between µxE and νS(xE)

for xE ∈ E, i.e. γ(xE ,S(xE)), xE ∈ E.

(ii) Monge-Independent plans and Monge-Knothe maps: We focus on two partic-
ular instances of E-optimal plans. Monge-Independent (MI) plans are obtained by
extending γE using independent couplings between µxE and νS(xE),

πMI
def
= (µxE ⊗ νS(xE))⊗ (IdE , S)]µE ,

and Monge-Knothe (MK) maps can be seen as a generalization of Knothe-Rosenblatt
transport that extend γE using optimal couplings:

TMK(xE , xE⊥)
def
= (S(xE), T̂ (xE ;xE⊥)) ∈ E ⊕ E⊥,

where T̂ (xE ; ·) : E⊥ → E⊥ denotes the Monge map from µxE to νS(xE). Further, we
prove the following properties for MI and MK transport:

(a) Discrete subspace-optimal transport converges to MI transport as sample size
goes to infinity;

(b) MK transport is the subspace-optimal transport with the smallest transportation
cost;

(c) Similarly to Knothe-Rosenblatt transport [Carlier et al., 2009], MK transport can
be obtained as the limit transportation map with the re-weighted quadratic cost
c(x, y) =

∑k
i=1(xi − yi)2 + ε

∑d−k
j=1 (xj+k − yj+k)2 when ε goes to 0;

(iii) Closed forms for Gaussian measures: Similarly to 2-Wasserstein distances and
Monge maps, we prove that MI and MK transports admit closed-form expressions
for Gaussian measures. More precisely, MI transport can be written as a degenerate
Gaussian coupling, and MK transport as a block-triangular map. Incidentally, we
give a closed form for the Knothe-Rosenblatt transport between Gaussian measures
involving the Cholesky factors of the covariance matrices.

(iv) Experiments on synthetic data, elliptical word embeddings, and for do-
main adaptation: We show on synthetic data that MI and MK transports are
more robust than classical transport in situations where the signal in distributions is
concentrated on a lower-dimensional subspace. We show how MK transport can be
used to distort the geometry of elliptical word embeddings in the case of polysemous
words. Finally, we provide an algorithm for selecting a mediating subspace E when
it is not prescribed, which we illustrate on a domain adaptation task with Gaussian
mixture models.
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Chapter 4: Entropic Optimal Transport between
(Unbalanced) Gaussian Measures

This chapter is based on [Janati and Muzellec et al., 2020].

Entropic regularization has not only proved to be an efficient method to make OT
more easily computable in a discrete setting, but also to alleviate the unfavorable sample
complexity of OT [Genevay et al., 2019]. Yet, as of recently no closed-form solution for
entropy-regularized OT between continuous distributions was known, in neither balanced
nor unbalanced settings. This absence of closed-form formulas for a fixed regularization
strength posed an important practical problem to evaluate the performance of stochastic
algorithms that try to approximate regularized OT. The purpose of this chapter is to fill
this gap, and provide closed-form expressions for balanced and unbalanced OT for Gaussian
measures, which can then be used as test cases, or as a principled regularization of the
Bures-Wasserstein distances.

Related Work. That Wasserstein distances and Monge maps have a closed form between
Gaussian measures is a well-known fact [Dowson and Landau, 1982, Olkin and Pukelsheim,
1982, Givens et al., 1984, Bhatia et al., 2018], which has been extended to elliptical
distributions from the same family [Gelbrich, 1990]. Yet, despite being widely used in
practice, no similar results were known in the case of entropy-regularized OT [Cuturi
et al., 2007, Peyré et al., 2019], until Bojilov and Galichon [2016] provided a closed form
for an “equilibrium 2-sided matching problem” which is equivalent to entropy-regularized
optimal transport. Second, a sequence of works in optimal control theory [Chen et al., 2016,
2018, Chen et al., 2016] studied stochastic systems for which entropy regularized optimal
transport between Gaussians can be seen as a special case, and found a closed form of the
optimal dual potentials. Shortly after the publication of our work [Janati and Muzellec et
al., 2020], several works with partially overlapping contributions were made public: first
Gerolin et al. [2020] found a closed form in the univariate case, then Mallasto et al. [2020]
and del Barrio and Loubes [2020] generalized the formula for multivariate Gaussians. The
closest works to this chapter are certainly those of Mallasto et al. [2020] and del Barrio and
Loubes [2020] where the authors solved the balanced entropy regularized OT and studied
the Gaussian barycenter problem. To the best of our knowledge, the closed form formula
we provide for unbalanced OT is novel. Other differences between this chapter and the
aforementioned papers are highlighted below.

Contributions. In this chapter, we present the first non-trivial closed forms for entropy-
regularized OT between continuous measures:

(i) A closed form for (Ent-OT) between Gaussian measures: We show that the
optimal entropic transportation plan between Gaussian measures is a Gaussian measure
itself. This result is obtained by proving the convergence of Sinkhorn iterations, which
lead to a fixed-point equation on symmetric matrices. We derive the solution of this
fixed-point equation to obtain a closed form for entropic OT. This closed form is
proven to remain well-defined, convex and differentiable even for singular covariance
matrices, unlike the Bures metric (which loses differentiability). Finally, we derive its
gradients and minimizers.

(ii) Debiased Sinkhorn barycenters between Gaussian measures: Using the defi-
nition of debiased Sinkhorn barycenters [Luise et al., 2019, Janati et al., 2020a], we
show that the debiased entropic barycenter of Gaussian measures restricted to sub-
Gaussian measures is Gaussian and that its covariance verifies a fixed-point equation
similar to that of [Agueh and Carlier, 2011].
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(iii) A closed form for regularized unbalanced OT between Gaussian measures:
We provide a closed-form expression of the unbalanced transport plan between
unnormalized Gaussian measures, with entropic regularization and KL marginal
penalties. This transport plan is proven to be an unnormalized Gaussian measure
itself. We provide a closed form for the cost of unbalanced OT as a function of the
measure masses, and of the mass of the optimal plan (whose expression we provide).
The formula we obtain sheds some light on the link between mass destruction and
the distance between the means in unbalanced OT.

Chapter 5: Missing Data Imputation using Optimal
Transport

This chapter is based on [Muzellec et al., 2020].

Missing data is a fundamental issue in data sciences. Even with a moderate dimension
and missing rate, ignoring data points with missing values quickly ceases to be a valid
option [Zhu et al., 2019]. Hence, prior to performing downstream tasks (such as fitting
a classification or regression model) it is often necessary to define a method to replace
missing data with reasonable values. In this chapter, we describe an OT-based method to
impute missing values that can rely or not on parametric assumptions on the underlying
data distribution.

Related Work. The missing data problem is the object of a rich literature in the statistics
community. The predominant nomenclature is that of Rubin [1976]: it distinguishes between
three settings, namely missing completely at random (MCAR), missing at random (MAR),
and missing not at random (MNAR) data. Most of the literature is devoted to methods for
MCAR and MAR data, which are statistically ignorable, meaning they allow to impute
without having to model the missingness mechanism itself [see Little and Rubin, 2002, van
Buuren, 2018]. Imputation methods generally aim to preserve the distribution of the data,
in order to limit the bias they introduce when performing downstream tasks. From a bird’s
eye view, imputation methods can be divided in two categories, depending on the type of
assumptions on the data distribution they rely on:

1. Methods relying on conditional models: e.g. [van Buuren and Groothuis-
Oudshoorn, 2011, MICE] which perform iterative regression, or iterative random
forests [Stekhoven and Buhlmann, 2011]. These methods model conditional distribu-
tions by imputing variables one by one, in a round-robin fashion.

2. Methods relying on joint models: e.g. methods assuming a low-rank matrix
model [Hastie et al., 2015, Josse et al., 2016], Gaussian joint models estimated
via the EM algorithm [Dempster et al., 1977], or Bayesian joint models [Murray
and Reiter, 2016]. More recently, deep learning (DL) models based on variational
autoencoders [Kingma and Welling, 2014, VAE] such as [Mattei and Frellsen, 2019,
MIWAE], [Ivanov et al., 2019, VAEAC] or generative adversarial networks [Goodfellow
et al., 2014, GAN] such as [Yoon et al., 2018, GAIN] have emerged.

Contributions. In this chapter, we leverage OT to propose flexible missing value impu-
tation methods that can operate either with our without parametric assumptions on the
data distribution.

(i) An OT-based imputation criterion: Our methods stem from the simple ob-
servation that two randomly-sampled batches from the same dataset should have
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similar distributions. Using Sinkhorn divergences to measure the discrepancy between
the distributions of two batches, we turn this criterion into a loss for missing data
imputation:

Lm(X)
def
=
∑

K:0≤k1<...<km≤n
L:0≤`1<...<`m≤n

Sε(µm(XK), µm(XL)), (4)

where Sε is the Sinkhorn divergence [Genevay et al., 2018], XK denotes the batch
constituted of points with indices in K = {k1, k2..., km}, and µm(XK) = 1

m

∑m
i=1 δXki

is the empirical measure supported on this batch. Minimizing this loss with respect to
imputed values allows to perform missing value imputation in a distribution-preserving
way.

(ii) Sinkhorn-based imputation algorithms: We design two imputation algorithms
to minimize (4) that either rely (b.) or not (a.) on parametric models for the data
distribution:

a. Direct Sinkhorn imputation: the first algorithm makes no parametric assump-
tion on the data distribution. It minimizes (4) using gradient descent w.r.t. missing
values directly. In other words, it optimizes as many parameters as there are miss-
ing values, without additional constraints. Hence, it can be applied to any dataset
with quantitative variables without further assumptions;

b. Sinkhorn round-robin imputation: the second algorithm adapts the round-
robin imputation scheme to the Sinkhorn batch loss (4). This method can be used
to fit any differentiable parametric model, such as linear models or multi-layer
perceptrons (MLP). A key advantage of this second method is that it allows to
perform out-of-sample imputation once the model has been fitted, without running
the training algorithm again.

(iii) Large-scale experimental validation: We show that our methods are competitive
against baselines and state-of-the-art methods (including DL-based ones) on 23 UCI
datasets. We consider MCAR, MAR and MNAR settings with different mechanisms,
and a wide range of missing rates (10%, 30% and 50%).





Contributions de cette Thèse

Le transport optimal (TO) est un problème vieux de deux siècles qui a donné naissance
à une riche théorie mathématique ainsi qu’à de nombreuses applications, encore activement
développées à ce jour. Le TO fut initialement formalisé par Monge dans son traité de
1781. Motivé par l’observation de travaux de terrassement militaire, Monge s’interrogea
quant à la manière optimale de transformer une mesure µ en une mesure ν de masse égale
sous l’action d’une application, par rapport à un coût égal à la distance parcourue par
les travailleurs pour chaque unité de masse. Du fait de sa difficulté mathématique – et
tout particulièrement de l’absence de garanties quant à l’existence d’une solution – les
progrès accomplis sur le problème de Monge furent très limités jusqu’aux années 1940,
quand Kantorovich en proposa une version relâchée : au lieu d’optimiser par rapport
à des applications point-à-point qui “poussent” µ sur ν, Kantorovich [1942] considéra
des couplages, c’est à dire des lois jointes entre µ et ν. Cette nouvelle formulation a
permis à la théorie du TO de s’épanouir, car le problème de Kantorovich admet une
solution sous des hypothèses beaucoup moins restrictives que le problème de Monge. En
particulier, il comprend le cas des distributions discrètes, qui peut être interprété comme
un problème d’allocation de ressources tel que posé par [Tolstoi, 1930, Hitchcock, 1941].
La version discrète du problème de Kantorovich fut résolue numériquement par Dantzig
[1949], avant de connaître des raffinements algorithmiques dans les années 1950 avec le
développement de la programmation linéaire [Dantzig, 1951] et des problèmes de flots
de coût minimum [Ford and Fulkerson, 1962, Goldberg and Tarjan, 1989, Ahuja et al.,
1993], refermant une phase féconde durant laquelle le TO est devenu l’un des problèmes
fondamentaux de la programmation mathématique.

La renaissance du transport optimal en mathématiques. À partir de la fin des
années 1980 et succédant aux travaux de Rachev and Rüschendorf [voir Rachev and
Rüschendorf, 1998, et références à l’intérieur], les aspects mathématiques du TO furent
progressivement mieux compris – y compris ceux relevant du problème de Monge. Dans son
article précurseur, Brenier [1987] prouva l’existence d’une application de Monge optimale
entre mesures admettant une densité et dans le cas d’une fonction de coût quadratique,
et caractérisa cette application comme l’unique transport étant le gradient d’une fonction
convexe. Ce résultat fondamental a été un outil essentiel pour de nombreux travaux
théoriques sur les applications de Monge. En particulier, il permit de reformuler le problème
de Monge sous la forme de l’EDP de Monge-Ampère, sur laquelle Caffarelli [1991] s’appuya
pour prouver des propriétés de régularité des solutions du cas quadratique. McCann [1997]
introduisit ensuite les interpolations de mesures qui portent désormais son nom, et qui
constituent la géodésique de transport optimal entre deux mesures selon la distance de
Wasserstein, qui est définie par le TO dans le cas où le coût de base est une distance
élevée à une puissance p ≥ 1. En observant que l’espace des mesures doté de la distance
de Wasserstein partage des propriétés clé avec les variétés, McCann a ouvert la voie aux
travaux fondateurs de Jordan et al. [1998], qui montrèrent que l’équation de Fokker-Plank
peut s’interpréter comme un schéma proximal en distance de Wasserstein – connu comme le
schéma JKO – d’une fonctionnelle prenant des mesures en argument. Cette construction fut
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complétée par Ambrosio et al. [2006], qui construisirent une théorie des flots de gradients en
distance de Wasserstein généralisant les flots euclidiens. Des liens ultérieurs avec les EDP et
la mécanique des fluides furent développés par Benamou [2003], définissant la formulation
dite dynamique du TO. Ces travaux ouvrirent la voie aux contributions essentielles de Villani
[2008] et Figalli et al. [2010] dont les travaux respectifs sur la courbure de Ricci et les
inégalités isopérimétriques, entre autres, furent récompensés par deux médailles Fields.

Transport optimal et sciences des données. Parallèlement, le TO apparut dès le
début des années 2000 dans des domaines plus appliqués tels que le traitement d’images,
la vision par ordinateur et l’apprentissage automatique. En effet, le transport discret fut
“redécouvert” par Rubner et al. [2000] pour des tâches d’extraction d’images sous le nom
de “distance de terrassement” (earth mover’s distance, EMD). Dès lors, il fut employé en
traitement d’images et en programmation graphique [Rabin et al., 2011, Bonneel et al., 2011,
Haker et al., 2004], mais ses usages demeurèrent limités par sa complexité en O(n3 log(n))
malgré des solveurs spécialisés [Pele and Werman, 2009]. Cette difficulté fut contournée
par l’ajout d’un terme de régularisation entropique au problème de Kantorovich par Cuturi
[2013]. En effet, la régularisation entropique permet non seulement d’assurer l’unicité de la
solution par stricte convexité, mais permet aussi de résoudre le problème correspondant
en complexité O(n2) à l’aide de l’algorithme de Sinkhorn [Sinkhorn, 1964], et produit une
divergence différentiable. Qui plus est, Solomon et al. [2015] ont montré que pour certains
coûts et domaines correspondant à un noyau séparable (e.g. pour des mesures sur une
grille 2D ou 3D avec un coût égal à une norme au carré), des techniques de convolution
rapide pouvaient être employées pour réduire cette complexité à O(n1+1/D). À leur tour,
ces résultats ont ouvert la voie à un usage plus répandu du TO en science des données et
en apprentissage automatique. En particulier, Frogner et al. [2015] emploie le transport
entropique avec des contraintes marginales relâchées comme fonction de perte pour la
classification multi-label, s’appuyant sur une contribution de Kusner et al. [2015] qui avait
proposé de comparer des documents en les représentant comme des histogrammes de mots, en
utilisant le TO entre plongements de mots dans Rd. Remarquablement, cet intérêt renouvelé
de la communauté du machine learning pour le transport optimal a mené à des applications
qui ne s’appuient pas nécessairement sur une formulation régularisée, notamment en
adaptation de domaine [Courty et al., 2014, 2017], en apprentissage génératif [Arjovsky
et al., 2017] et pour l’apprentissage robuste au sens des distributions [Esfahani and Kuhn,
2018].

Challenges modernes du TO en apprentissage automatique. Malgré ces progrès,
les applications du TO en sciences des données restent limitées par certaines difficultés.
En particulier, les propriétés statistiques peu favorables du TO liées à sa complexité
d’échantillonage élevée ont dernièrement fait l’objet de nombreux travaux. Weed and Bach
[2017] ont prouvé une borne précise montrant qu’estimer la distance de Wasserstein requiert
un nombre d’échantillons exponentiel en la dimension de l’ensemble sur lequel les mesures
sont supportées. La régularisation entropique s’est avérée permettre non seulement de dimin-
uer la complexité calculatoire du TO, mais aussi sa complexité d’échantillonage [Genevay
et al., 2019]. De manière alternative, des raffinements par rapport à la borne de Weed
and Bach peuvent être obtenus en supposant que les mesures diffèrent sur un sous-espace
de faible dimension [Niles-Weed and Rigollet, 2019]. Dans le cadre non-régularisé, ces
résultats justifient une tendance récente consistant à utiliser le TO entre des projections en
basse dimension des mesures, pour définir des divergences entre distributions [Rabin et al.,
2011, Bonneel et al., 2015, Paty and Cuturi, 2019] qui bénéficient de coûts de calcul plus
faibles, et potentiellement d’une meilleure complexité d’échantillonage. Plus généralement,
exploiter les cas particuliers pour lesquels les applications de transport et les distances de
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TO sont en forme close constitue une approche prometteuse pour réduire les complexités
de calcul et d’échantillonage, d’autant plus que les méthodes permettant de résoudre le
TO entre mesures continues sont rares. Par exemple, Flamary et al. [2019] a prouvé que le
cas des applications de transport linéaire, comprenant (mais ne se limitant pas à ces cas)
les cas gaussien et elliptique, bénéficie de meilleures bornes de complexité statistique. Les
difficultés liées aux complexités computationnelles et statistiques du TO sont un des aspects
sur lesquels la communauté du transport optimal travaille actuellement, mais d’autres
directions de recherche concernant les applications du TO sont aussi en cours d’exploration.
Par exemple, il est apparu dans plusieurs travaux que les contraintes marginales du trans-
port optimal pouvaient être trop restrictives pour certains usages [Schiebinger et al., 2019,
Frogner et al., 2015], ce qui a donné lieu au développement du transport optimal déséquili-
bré [Chizat, 2017], où les contraintes sont remplacées par des pénalités. En outre, les flots
de gradient de Wasserstein se sont avéré constituer un outil clé pour l’analyse des modèles
sur-paramétrés [Chizat and Bach, 2018, Chizat et al., 2020], qui constituent un sujet de
recherche de pointe en apprentissage automatique.

Contributions de cette thèse. Cette thèse, qui a débuté en 2017, propose quelques
contributions dans le but d’aider le transport optimal à dépasser ses difficultés computa-
tionnelles et statistiques bien connues, et à gagner en applicabilité pour l’apprentissage
automatique.

(i) Dans un premier projet [Muzellec and Cuturi, 2018], l’expression en forme close du
TO entre distributions elliptiques (qui définit la géométrie de Bures-Wasserstein) est
exploité pour proposer un nouvel outil de plongement de données complexes : plutôt
que de représenter les mots comme des vecteurs dans Rd [Borg and Groenen, 2005,
Maaten and Hinton, 2008], nous proposons de les représenter à l’aide de mesures
de probabilité elliptiques. En particulier, cette représentation permet d’encoder de
manière naturelle la notion d’incertitude, que nous prouvons être bénéfique dans
le cadre d’applications en traitement du langage naturel. Afin de concevoir ces
algorithmes, nous avons développé des méthodes numériques d’optimisation qui tirent
profit de la structure riemannienne de la métrique de Bures pour les matrices PSD.

Depuis ce point de départ, nous avons approfondi l’usage de la géométrie de Bures-
Wasserstein en conjonction avec d’autres approches qui étaient alors explorées par la
communauté de l’apprentissage automatique, pour obtenir une meilleur complexité.

(ii) Nous étudions l’extrapolation de plans de transport à partir d’applications définies
entre les projections de mesures sur des sous-espaces de faible dimension [Muzellec
and Cuturi, 2019]. Nous montrons l’existence de plans extrapolés et en fournissons
une caractérisation théorique, à partir de laquelle nous exhibons deux instances parti-
culières qui généralisent le transport de Knothe-Rosenblatt [Knothe, 1957, Rosenblatt,
1952], et prouvons qu’elles admettent des formes closes pour les mesures gaussiennes,
liées aux propriétés de la métrique de Bures.

(iii) Nous proposons une dernière contribution portant sur le TO entre distributions
elliptiques dans [Janati and Muzellec et al., 2020], dans laquelle nous fournissons la
première forme close pour le transport optimal entropique entre mesures gaussiennes.
Remarquablement, ces expressions constituent à notre connaissance le premier exemple
de forme closes dans le cas déséquilibré pour le transport entropique, et pourront
désormais être utilisées comme cas de test par les chercheurs qui conçoivent et
étudient les algorithmes pour le TO entropique (et plus généralement les variantes
de l’algorithme de Sinkhorn). Elles fournissent en outre un exemple dans lequel
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l’arbitrage entre création et transport de masse en transport optimal déséquilibré
peut être caractérisé de manière exacte.

(iv) Finalement, la dernière contribution de cette thèse porte sur une application du TO
entropique à l’imputation de données manquantes [Muzellec et al., 2020]. Ce travail
s’appuie sur le fait intuitif que deux batches aléatoires tirés du même jeu de données
devraient avoir des distributions similaires. Partant, nous transformons ce critère en
une fonction de perte utilisant la divergence de Sinkhorn, et proposons des méthodes
d’imputation flexibles qui peuvent au choix servir à entraîner un modèle d’imputation
paramétrique, ou à effectuer une imputation sans faire d’hypothèse paramétrique sur
la distribution sous-jacente des données.
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Notation

Ambiant Spaces.

M(Rd) : the set of positive measures over Rd

P(Rd) : the set of probability measures over Rd

Pp(Rd) : the set of probability measures over Rd with finite p first moments
∫
Rd ‖x‖pdµ(x)

C(X ) : the set of continuous real-valued functions on X

Cb(X ) : the set of continuous, bounded real-valued functions on X

Measures.

T]µ : the pushforward measure of µ by T s.t. for all A ⊂ Rd, T]µ(A) = µ(T−1(A))

µn ⇀ µ : µn ⇀ µ iff ∀f ∈ Cb(Rd),
∫
Rd fdµn →

∫
Rd fdµ (weak convergence)

λV : The Lebesgue measure on V

Norms and Matrices.

Sd : the set of symmetric square matrices in Rd×d

Sd+ : the set of symmetric positive semi-definite matrices in Rd×d

Sd++ : the set of symmetric positive definite matrices in Rd×d

A ≥ B : A ≥ B (resp. A > B) iff A−B ∈ Sd+ (resp. Sd++) (Loewner partial order)

〈A, B〉 : 〈A, B〉 def
= TrATB (Frobenius inner product)

‖A‖ : ‖A‖ def
= (TrATA)1/2 (Frobenius norm)

‖A‖op : ‖A‖op = sup
x 6=0

‖Ax‖
‖x‖ (operator norm, also equal to the leading singular value of A)

|A| : the determinant of A (also det A)

‖x− y‖C : ‖x− y‖2C
def
= (x− y)TC(x− y) (Mahalanobis norm induced by C)

C† : the Moore-Penrose pseudo-inverse of C [Penrose, 1955]

Others.

J1, nK : J1, nK def
= [1, n] ∩ N

Sn : the set of permutations over J1, nK





Chapter 1

Optimal Transport Geometries

In this chapter, we introduce the key results and concepts from the optimal transport
(OT) theory on which this thesis will rely. This presentation puts the accent on the
computational aspects of OT, with the end goal of applying OT tools to machine learning
(ML) problems.

We start by presenting the original Monge formulation of OT and its Kantorovich
relaxation in Section 1, with an emphasis on the case where the ground cost is a distance
to a power, which defines the Wasserstein distances. The links between both formulations
and their practical aspects are discussed, depending on whether discrete or continuous
distributions are considered. The numerical challenges associated with OT will lead us to
investigate particular cases or variants based on 1D OT that can be solved in closed form,
or easily approximated.

In Section 2, we delve into the case of elliptical distributions, for which optimal transport
has links with the Bures geometry on PSD matrices. Elliptical distributions can be defined
as generalizations of Gaussian distributions, and correspond to one of the very few cases
were transport maps and Wasserstein distances are available in closed form. This geometry
will play a role in Chapters 2 to 4.

Finally, we present entropy-regularized OT (Ent-OT) in Section 3. Initially introduced
as an approximation of OT that can be easily computed using Sinkhorn’s algorithm, Ent-OT
is now widely used in the ML community as it is smooth and differentiable. The recent
introduction of Sinkhorn divergences, which inherit from the numerical advantages of
Ent-OT and its differentiability while defining divergences for probability distributions in
a rigourous sense, has reinforced the use of entropic regularization for data science. We
conclude this section by mentioning alternative regularizations of OT, and the unbalanced
OT (UOT) problem between measures with different total masses. Ent-OT is considered in
Chapters 4 and 5, in a theoretical and applied perspective respectively.

Chapter 2 Chapter 3 Chapter 4 Chapter 5
Unregularized OT X X
Bures-Wasserstein X X X
Entropy-regularized OT X X

Table 1.1: Summary of OT geometries used in the main chapters of this thesis.
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1 Monge-Kantorovich Optimal Transport

Comparing and mapping distributions is an recurring task in machine learning, in both
supervised and unsupervised settings. As will be shown in this chapter, the optimal
transport theory provides robust criteria for quantifying differences between measures, and
defining mappings between them. In this thesis, measures will be assumed to be supported
on Rd. While the full scope of optimal transport allows for much more generality, this
thesis will essential consider two types of measures: (i) discrete measures and (ii) absolutely
continuous (a.c.) measures, i.e. measures that admit a density w.r.t. the Lebesgue measure.

1.1 Monge and Kantorovich formulations

Monge formulation. The optimal transport problem was first introduced by Monge
in 1781, motivated by the modelization of land leveling. Given two measures of equal
mass µ, ν ∈ P(Rd) and a cost function c : Rd × Rd → R+, Monge raised the problem of
transporting µ to ν optimally w.r.t. c. More formally, this problem can be stated as

inf
T :T]µ=ν

∫

Rd
c(x, T (x))dµ(x), (M)

where T]µ is the pushforward measure of µ by T , defined by T]µ(A) = µ(T−1(A)) for all
µ-measurable sets A.1 When it exists, an optimal map in (M) is called a Monge map.
Although it is intuitive, Monge’s formulation is mathematically challenging: in particular,
the existence of a Monge map is not guaranteed. As an example, consider the case where
µ is a Dirac distribution. Then, T]µ is necessarily also a Dirac distribution, hence there
can be no transport in Monge’s sense if ν is not a Dirac distribution as well. This also
highlights the intrinsic asymmetry of (M), as conversely, it is always possible to find a
Monge map going to a Dirac measure δy, by setting ∀x, T (x) = y.

Kantorovich formulation. To alleviate this issue, Kantorovich [1942] introduced a
generalization of Monge’s problem. Instead of considering maps, Kantorovich proposed to
optimize over couplings, i.e. measures over the product space Rd × Rd that have µ and ν
as marginals:

inf
γ∈Π(µ, ν)

∫∫

Rd×Rd

c(x, y)dγ(x, y), (K)

where Π(µ, ν)
def
= {γ ∈ P(Rd × Rd) : π1]γ = µ, π2]γ = ν} is the set of transportation plans,

and π1 : (x, y) 7→ x, π2 : (x, y) 7→ y are the canonical projections. A key advantage of this
formulation is that a solution to (K) exists under weak conditions on the cost function c.

Theorem 1.1 (Santambrogio [2015, Theorem 1.7]). Let µ, ν ∈ P(Rd) and c : Rd × Rd →
[0,+∞] be a lower semi-continuous ground cost. Then (K) admits a solution.

Wasserstein distances. When the ground cost c is actually a distance d(x, y) on Rd to
a power p ≥ 1 and when µ, ν have moments of order p, the Wasserstein distances can be
defined from (K).

Definition 1.2 (Wasserstein Distances). Let p ≥ 1 and µ, ν ∈ Pp(Rd). The p-Wasserstein
distance is defined as

Wp(µ, ν)
def
= inf

γ∈Π(µ, ν)

( ∫∫

Rd×Rd

d(x, y)pdγ(x, y)
)1/p

. (1.1)

1Equivalently, if X is a random variable with law µ, then T]µ is the law of T (X).
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Wasserstein distances satisfy all three metric axioms on Pp(Rd) [Santambrogio, 2015,
Prop 5.1], and metrize weak convergence plus convergence of moments of order p [San-
tambrogio, 2015, Thm 5.11]. A sequence of measures µn converges weakly to a measure
µ (denoted µn ⇀ µ) i.f.f. for any continuous bounded function f ∈ Cb(Rd), the integrals∫
Rd fdµn converge to

∫
Rd fdµ. In machine learning, the metrization of weak convergence is

a crucial requirement for measure discrepancies, as we are often interested in minimizing
the value of a loss function integrated against probability distributions.

Within the scope of this thesis, the ground distance will always be the Euclidean
distance d(x, y) = ‖x − y‖2. In particular, the p = 2 case will play a crucial role, as the
2-Wasserstein distance satisfies particular properties (most of which are consequences of
Brenier’s theorem below). Therefore, unless stated otherwise, Wasserstein distances will
designate the 2-Wasserstein distance W2.

Bridging Monge and Kantorovich: the continuous setting. In light of the previous
considerations, it is natural to ask under which conditions a Monge map might exist, and
what links exist between Monge and Kantorovich formulations. For an absolutely continuous
measure µ, Theorems 1.3 and 1.4 below show that under conditions on the cost function
and/or compactness assumptions, the Kantorovich formulation (K) generalizes Monge’s
(M), in the sense that the solution to (M) coincides with the solution of (K) in the coupling
formalism.

T
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Figure 1.1: For a.c. measures, an optimal transport map (left) has an equivalent coupling
supported on its graph (right).

Theorem 1.3 (Santambrogio [2015, Theorem 1.17.]). Let µ, ν ∈ P(Rd) be compactly
supported, and such that µ is a.c. Consider a cost function c(x, y) = h(x− y) where h is a
strictly convex function. Then, there exists a unique optimal transport map T and a unique
optimal coupling γ, and T and γ are related by γ = (id, T )]µ.

Hence, under the conditions of Theorem 1.3, an optimal Monge map exists and can
equivalently be described as an optimal transportation plan supported on its graph (Fig-
ure 1.1). In particular, for a.c. and compactly supported µ and ν, Theorem 1.3 holds when
c(x, y) = ‖x− y‖p with p > 1 as is the case for the Wasserstein distances (Definition 1.2,
excluding the p = 1 case). The p = 2 case holds a particular place in the optimal transport
theory, as shown by Brenier in his seminal paper [Brenier, 1987].
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Theorem 1.4 (Brenier [1987]). Let µ, ν ∈ P2(Rd) such that µ is a.c., and c(x, y) = ‖x−y‖2.
Then, problem (M) admits a unique solution, which is characterized (among all transport
maps) as being the gradient of a convex function φ: ∀x ∈ Rd, T ?(x) = ∇φ(x).

Note that contrary to Theorem 1.3, Theorem 1.4 no longer requires compact supports.
Compared to Theorem 1.3, the major contribution of Theorem 1.4 is the unique characteri-
zation of the transport map as the gradient of a convex function. It will play a key role in
Section 2. As an example, it implies the following immediate corollary.

Corollary 1.5 (Theorem 1.4). Let µ ∈ P2(Rd) be a.c., c(x, y) = ‖x− y‖2 and φ : Rd → R
a convex function. Then, ∇φ : Rd → Rd is the unique optimal Monge map from µ to ∇φ]µ.

Theorems 1.3 and 1.4 also imply that for compactly supported a.c. measures, or when
p = 2, Wasserstein distances can also be formulated from a Monge point of view:

Wp(µ, ν) = inf
T :T]µ=ν

(∫

Rd
‖x− T (x)‖pdµ(x)

)1/p

. (1.2)

Monge and Kantorovich: the discrete setting. When µ is a discrete distribution of
the form

∑n
i=1 aiδxi with a ∈ ∆n and ∀i ∈ J1, nK, xi ∈ Rd, the existence of a Monge map

occurs in few specific cases, the most notable being when µ and ν are discrete distributions
with uniform weights and equal number of points.

Proposition 1.6. Let µ = 1
n

∑n
i=1 δxi , ν = 1

n

∑n
i=1 δyi with n ∈ N? and ∀i ∈ J1, nK, xi, yi ∈

Rd. Then there exists a (not necessarily unique) Monge map from µ to ν. It takes the
form of a permutation σ ∈ Sn mapping each xi to yσ(i), and has an equivalent optimal
Kantorovich plan γ? = 1

n

∑n
i=1 δ(xi,yσ(i)).

Proposition 1.6 is a consequence of the Birkhoff–von Neumann theorem [Birkhoff, 1946,
Von Neumann, 1953] and is sometimes referred to as the optimal matching problem.

Remark 1.7. It is sometimes said for short that whenever a transport map exists, (M)
and (K) coincide. This is a false statement: as a counter-example, consider as in Figure 1.2
two measures consisting of two Diracs each with weights (1/4, 3/4), and a ‖ · ‖2 ground cost.
Although a transport map exists (mapping between points with equal weights), by varying
the positions of the Diracs it can be made arbitrarily sub-optimal compared to the optimal
coupling. See [Santambrogio, 2015, §1.4] for other counter-examples.
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Figure 1.2: Optimal coupling (left) v.s. matching (right): although there exists a unique
one-to-one mass-preserving matching, it is clearly sub-optimal compared to the Kantorovich
plan.



1. MONGE-KANTOROVICH OPTIMAL TRANSPORT 33

In this thesis, both Monge and Kantorovich formulations will be used: Chapter 2
is based on the Monge point of view and Chapter 5 on the Kantorovich version, while
Chapter 3 makes heavy use of the interplay between both formulations.

1.2 Computational aspects

Optimal transport quantities, such as the Wasserstein distances, are intrinsically defined
through optimization problems. Hence, the computational aspects of solving these optimiza-
tion problems are key in determining whether OT can be of practical use in different machine
learning settings. In this section, the numerical aspects of OT are presented according to
the different possible settings, and easily computable OT variants are introduced.

The one-dimensional setting. In the one-dimensional setting, optimal transport can
be computed from the cumulative distribution functions (CDF) Fµ(x)

def
=
∫ x
−∞ dµ and their

generalized inverses F [−1]
µ (x)

def
= inf{t ∈ R : Fµ(t) ≥ x} (also called quantile functions).

Therefore, whenever those functions are easily computable, so is OT. This fact is the
building block of the Knothe-Rosenblatt transport and sliced Wasserstein distances, which
are introduced later. The following result describes one-dimensional OT in the continuous
setting.

Proposition 1.8 (Santambrogio [2015, Theorem 2.9]). Let µ, ν ∈ P(R) such that µ is a.c.
and c(x, y) = h(x− y) where h : R→ R+ is a convex (resp. strictly convex) function. Then,
there exists a (resp. exists a unique) Monge map from µ to ν. This map is monotone, and
can be written as

T : x 7→ F [−1]
µ ◦ Fν(x).

Moreover, the value of the objectives of problems (M) and (K) is given by
∫ 1

0
h(F [−1]

ν (x)− F [−1]
µ (x))dx.

In particular, one-dimensional Wasserstein distances are equal to the Lp distance
between quantile functions:

W p
p (µ, ν) =

∫ 1

0
|F [−1]
ν (x)− F [−1]

µ (x)|pdx

, ‖F [−1]
ν − F [−1]

µ (x)‖pLp .

A similar result holds when µ and ν are discrete measures.

Proposition 1.9. Let µ = 1
n

∑n
i=1 δxi and ν = 1

n

∑n
i=1 δyi with x1 ≤ x2 ≤ ... ≤ xn and

y1 ≤ y2 ≤ ... ≤ yn and c, h as in Proposition 1.8. Then, there exists an optimal transport
map given by

∀i ∈ J1, nK, T (xi) = yi,

and its corresponding transport cost is 1
n

∑n
i=1 h(yi − xi).

In particular, if µ, ν have sorted support points as in Proposition 1.9, it holds that
W p
p (µ, ν) = |xi − yi|p. This implies that in the discrete and uniform setting, optimal

transport and Wasserstein distances can be obtained by sorting supporting points, in
O(n log n) time. If µ and ν are discrete but with non-uniform weights or a different number
of points in their supports, it is still possible to compute an optimal transport plan that
relies on sorting, as illustrated in Figure 1.3.
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<latexit sha1_base64="CDLGUcovZZjK3f9bePotOGIFJyI=">AAAB+HicbVC7TsMwFL3hWcorlBGGiAqJqUpYYKxgYWwl+pCaqHKcm9aq85DtVC1RfgWxFVYm/oKZjU8hTTtAy5mOzzm+1z5uzJlUpvmlbWxube/slvbK+weHR8f6SaUto0RQbNGIR6LrEomchdhSTHHsxgJJ4HLsuKP7ud8Zo5AsCh/VNEYnIIOQ+YwSlUt9vZLaxZBUoJeldpBkWV+vmjWzgLFOrCWp1s8/mt8A0Ojrn7YX0STAUFFOpOxZZqyclAjFKMesbCcSY0JHZIA9b8xiGZIApZNOis2ZcelHwlBDNIrz73hKAimngZtnAqKGctWbi/95vUT5t07KwjhRGNI8knt+wg0VGfMWDI8JpIpPc0KoYPlDDTokglCVd1XOG7BW/7tO2tc1y6xZTatav4MFSnAGF3AFFtxAHR6gAS2gMIFnmMGr9qS9aDPtbRHd0JZ3TuEPtPcfZOaWdQ==</latexit><latexit sha1_base64="J7lwka5MhjjIQwVqjNB+eT6XPDs=">AAAB+HicbVC7TsMwFHXKq5RXKCMIWVRITFXCAmMFC2Mr0YfURJXj3LRWnYdsp2qJMvIbiK2wMvUvmPkGfoI07QAtZzo+5/he+zgRZ1IZxpdW2Njc2t4p7pb29g8Oj/TjckuGsaDQpCEPRcchEjgLoKmY4tCJBBDf4dB2hvdzvz0CIVkYPKpJBLZP+gHzGCUqk3p6ObHyIYkAN00sP07Tnl4xqkYOvE7MJanUzmaN7+fzWb2nf1puSGMfAkU5kbJrGpGyEyIUoxzSkhVLiAgdkj503RGLZEB8kHYyzjen+NILBVYDwPn5dzwhvpQT38kyPlEDuerNxf+8bqy8WzthQRQrCGgWyTwv5liFeN4CdpkAqvgkI4QKlj0U0wERhKqsq1LWgLn633XSuq6aRtVsmJXaHVqgiE7RBbpCJrpBNfSA6qiJKBqjFzRFb9qT9qpNtfdFtKAt75ygP9A+fgA++Zfb</latexit><latexit sha1_base64="UE4Rt3sVHFxOn51P+l6hnHyUZ+c=">AAAB+HicbVC7TsMwFHXKq5RXKCOLRYXEVCUsMFawMBaJPqQ2qhznprVqJ5HtVC1RfgWxFVZ+hJm/wQ0ZoOVMx+cc32sfP+FMacf5sipb2zu7e9X92sHh0fGJfVrvqjiVFDo05rHs+0QBZxF0NNMc+okEInwOPX96v/J7M5CKxdGTXiTgCTKOWMgo0UYa2fVsWAzJJAR5NhRpno/shtN0CuBN4pakgUq0R/bnMIhpKiDSlBOlBq6TaC8jUjPKIa8NUwUJoVMyhkEwY4mKiADlZfNic44vw1hiPQFcnH/HMyKUWgjfZATRE7XurcT/vEGqw1svY1GSaoioiRgvTDnWMV61gAMmgWq+MIRQycxDMZ0QSag2XdVMA+76fzdJ97rpOk330W207souqugcXaAr5KIb1EIPqI06iKI5ekFL9GY9W6/W0nr/iVas8s4Z+gPr4xtbu5Qw</latexit>

⌫
<latexit sha1_base64="xllHjAsiE67I9r0dZo6cOjiTCHA=">AAAB+XicbVC7TsMwFHXKq5RXoCOLRYXEVCUICcYKFsYi0VKpiSrHvWmtOg/5URFZ+RbEVlj5EGb+hjRkgJYzHZ9zfK99gpQzqRzny6ptbG5t79R3G3v7B4dH9vFJXyZaUOjRhCdiEBAJnMXQU0xxGKQCSBRweApmd0v/aQ5CsiR+VFkKfkQmMQsZJaqQRnbTeOUQE3ANufFinecju+W0nRJ4nbgVaaEK3ZH96Y0TqiOIFeVEyqHrpMo3RChGOeQNT0tICZ2RCQzHc5bKmEQgffNcrs7xeZgIrKaAy/PvuCGRlFkUFJmIqKlc9Zbif95Qq/DGNyxOtYKYFpHCCzXHKsHLGvCYCaCKZwUhVLDioZhOiSBUFWU1igbc1f+uk/5l23Xa7sNVq3NbdVFHp+gMXSAXXaMOukdd1EMUZegFLdCbZaxXa2G9/0RrVnWnif7A+vgGLuOUqw==</latexit><latexit sha1_base64="xllHjAsiE67I9r0dZo6cOjiTCHA=">AAAB+XicbVC7TsMwFHXKq5RXoCOLRYXEVCUICcYKFsYi0VKpiSrHvWmtOg/5URFZ+RbEVlj5EGb+hjRkgJYzHZ9zfK99gpQzqRzny6ptbG5t79R3G3v7B4dH9vFJXyZaUOjRhCdiEBAJnMXQU0xxGKQCSBRweApmd0v/aQ5CsiR+VFkKfkQmMQsZJaqQRnbTeOUQE3ANufFinecju+W0nRJ4nbgVaaEK3ZH96Y0TqiOIFeVEyqHrpMo3RChGOeQNT0tICZ2RCQzHc5bKmEQgffNcrs7xeZgIrKaAy/PvuCGRlFkUFJmIqKlc9Zbif95Qq/DGNyxOtYKYFpHCCzXHKsHLGvCYCaCKZwUhVLDioZhOiSBUFWU1igbc1f+uk/5l23Xa7sNVq3NbdVFHp+gMXSAXXaMOukdd1EMUZegFLdCbZaxXa2G9/0RrVnWnif7A+vgGLuOUqw==</latexit><latexit sha1_base64="xllHjAsiE67I9r0dZo6cOjiTCHA=">AAAB+XicbVC7TsMwFHXKq5RXoCOLRYXEVCUICcYKFsYi0VKpiSrHvWmtOg/5URFZ+RbEVlj5EGb+hjRkgJYzHZ9zfK99gpQzqRzny6ptbG5t79R3G3v7B4dH9vFJXyZaUOjRhCdiEBAJnMXQU0xxGKQCSBRweApmd0v/aQ5CsiR+VFkKfkQmMQsZJaqQRnbTeOUQE3ANufFinecju+W0nRJ4nbgVaaEK3ZH96Y0TqiOIFeVEyqHrpMo3RChGOeQNT0tICZ2RCQzHc5bKmEQgffNcrs7xeZgIrKaAy/PvuCGRlFkUFJmIqKlc9Zbif95Qq/DGNyxOtYKYFpHCCzXHKsHLGvCYCaCKZwUhVLDioZhOiSBUFWU1igbc1f+uk/5l23Xa7sNVq3NbdVFHp+gMXSAXXaMOukdd1EMUZegFLdCbZaxXa2G9/0RrVnWnif7A+vgGLuOUqw==</latexit>

Figure 1.3: One-dimensional discrete transport. Left: uniform weights, right: non-uniform
weights.

This introductory one-dimensional example already hints that the computational chal-
lenges induced by OT are quite different depending on whether the distributions µ and ν
are discrete, or continuous2. This yields three broad settings, which are now introduced.

Discrete-discrete transport. When both distributions are discrete and can be written
as µ =

∑n
i=1 aiδxi and ν =

∑m
i=j bjδyj with a ∈ ∆n,b ∈ ∆m, (K) is equivalent to the

following linear program:

min
P∈U(a,b)

〈P, C〉, (D-OT)

with U(a,b)
def
= {P ∈ Rn×m+ : P1m = a,PT

1n = b} and C = [c(xi, yj)]1≤i≤n,1≤j≤m.
(D-OT) can be algorithmically solved using the network simplex algorithm, in O(n +
m)nm log(n+m)) time [see Ahuja et al., 1993]. Hence, although it is tractable, discrete
optimal transport can be computationally expensive, and has the additional inconvenient
of not being differentiable w.r.t. a and b due to the non-uniqueness of an optimal plan P?.
However, discrete OT plans are sparse, which is a valuable property in matching-based
applications such as domain adaptation [Courty et al., 2014]. This sparsity comes from the
fact that there always exists an optimal plan lying on a vertex of U(a,b): such a plan has
at most n+m nonzero entries.

Discrete-continuous transport. The case where µ is discrete and ν a.c. (often referred
to as the semi-discrete setting) is already more challenging. It can be solved using quasi-
Newton solvers relying on the computation of Laguerre cells and making piecewise constant
approximations of the density [Mérigot, 2011] in a low-dimensional setting, or approximated
using stochastic optimization [Genevay et al., 2016] (which requires however being able to
sample from ν).

Continuous-continuous transport. When both µ and ν are a.c., closed forms or
scalable methods for optimal transport are scarce. Thanks to the Brenier theorem (Theo-
rem 1.4), the case of a quadratic cost ‖ · − · ‖2 enjoys additional properties that make it
tractable in some cases. A first consequence of Theorem 1.4 is that (M) with a quadratic
cost is equivalent to the Monge-Ampère equation. Indeed, let p (resp. q) denote the density
function of µ (resp. ν). Then, (M) is equivalent to finding a convex function f such that

|∇f |2 =
p

q ◦ ∇f . (1.3)

Secondly, optimal transport maps and 2-Wasserstein distances are available in closed form
for the class of elliptical distributions, which is the subject of Section 2.

2Of course, in all generality a probability measure need not be either discrete or continuous. More
complex settings could also be considered, but fall out of the scope of this thesis.
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1.3 Variants of optimal transport.

As the above considerations show, solving optimal transport can be very computationally
challenging, even so in the discrete-discrete setting if the sample size is large. A notable
exception is 1D transport, which can be conveniently solved through sorting or when
knowledge of quantile functions is available (see Section 1.2). This exception has motivated
variants of optimal transport that enjoy favorable computational properties.

Sliced Wasserstein Distances. Rabin et al. [2011] propose to average the Wasserstein
distance between projections on sampled one-dimensional directions, which defines the
Sliced Wasserstein (SW) distances:

SWp
p(µ, ν)

def
=

∫

Sd
W p
p (pθ]µ, pθ]ν)dθ, (SW)

where ∀x ∈ Rd, pθ(x) = 〈x, θ〉. Like Wasserstein distances, sliced Wasserstein distances
satisfy all three metric axioms. However, Wasserstein and sliced Wasserstein distances are
not equal. In practice, SW distances are estimated by averaging the projected Wasserstein
distances along a fixed number of random directions, using Proposition 1.9. Moreover,
SW distances are differentiable (even in the discrete setting) [Bonneel et al., 2015]. For
instance,

∂xiSW2
2


 1
n

n∑

i=1

δxi ,
1
n

n∑

j=1

δyj


 =

2

n

∫

Sd
(〈xi, θ〉 − 〈yσθ(i), θ〉)θdθ, (1.4)

where σθ is the permutation corresponding to the optimal map on the direction θ ∈ Sd (see
Proposition 1.9).

The convenience of SW distances has lead to a recent interest in the ML community,
in the GAN/VAE literature in particular [Deshpande et al., 2018, Wu et al., 2019]. Note
however that even though SW provide a cheap way of comparing distributions, they have
no associated pushforward mapping. They can however be associated to a coupling that
corresponds to the average of the 1D couplings:

dγSW(x, y)
def
=

∫

Sd
dγθ(x, y)dθ.

Knothe-Rosenblatt (KR) transport. In independent works, Knothe [1957] and Rosen-
blatt [1952] proposed a method for defining a transport map between two a.c. measures. It
consists in a recursive scheme, relying on 1D monotone transport maps between conditional
distributions. More precisely, let f(x1, x2, ..., xd) and g(y1, y2, ..., yd) denote the density
functions of two a.c. probability measures µ, ν ∈ Rd. Let f1 and g1 denote the marginal
density functions of µ, ν on the first coordinate. Then, there exists a monotone map T1

(as in Section 1.2), mapping f1 to g1. The broad idea is to then map the marginals on
the first two directions, f2(x1, x2) and g2(y1, y2), in a way that conserves the transport of
the first marginal. This implies in particular that (x1, x2) can only be mapped to a point
of the form (T1(x1), y2): in other words, the conditional density fx1(x2) of f2 given x1

must be mapped to gT (x1)(y2) of g2 given T (x1). Again, there exists a monotone optimal
map T2(x1, ·) : x2 7→ T2(x1, x2) mapping fx1 to gT (x1) optimally, and one can see that
(x1, x2) 7→ (T1(x1), T2(x1, x2) maps f2 to g2 (although this time not optimally). Applying
this method recursively yields a map of the form

TKR(x1, x2, ..., xd) = (T1(x1), T2(x1, x2), ..., Td(x1, x2, ...xd)),
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which verifies TKR]µ = ν, and is monotone for the lexicographic order. Although this map
TKR is not in general an optimal map, it defines an accessible instance of a transport map.
A more precise presentation of KR transport is given in Santambrogio [2015, Chapter 2].
Chapter 3 introduces generalizations of the KR transport, with closed forms for Gaussian
distributions.

Chapter 2 Chapter 3 Chapter 4 Chapter 5
Discrete-Discrete X
Continuous-Continuous X X X
1D & KR transport X

Table 1.2: Summary of the OT settings used in the main chapters of this thesis.

2 The Bures-Wasserstein Geometry

Out of the different settings presented in Section 1.2, the continuous-continuous one seems
to be the most numerically challenging, as the only general methods available rely on
approximating the solutions of PDEs [Benamou and Brenier, 2000], which does not scale well
with the dimension of the ambient space. A noticeable exception are elliptical distributions,
which can be seen as generalizations of Gaussian distributions or multivariate generalizations
of location-scale families, for which closed-form solutions exist.

Unless stated otherwise, we consider the Frobenius inner product and norm on matrices
in the following.

2.1 Elliptical distributions

Several concurrent definitions of elliptical distributions (also known as elliptically-contoured
distributions) coexist. The most intuitive definition would be to see elliptical distributions
as distributions on Rd having a density function that has elliptical level sets, i.e. density
functions of the form x 7→ f(‖x− c‖2C−1)/

√
|C|, where c ∈ Rd is the mean (or location)

parameter, C ∈ Sd++ is the scale parameter, and f : Rd → R satisfies
∫
Rd f(‖x‖2)dx = 1. As

an example, Gaussian distributions correspond to f ∝ exp(− · /2). However, this definition
lacks in generality as it requires C to be invertible and therefore does not encompass
degenerate distributions, supported on lower-dimensional subspaces. To address this issue,
Gelbrich [1990] proposed a more general definition, which is stated here in a simplified
version.

Definition 1.10 (Elliptical Distributions, [Gelbrich, 1990]). Let c ∈ Rd,C ∈ Sd+. Let λImC

denote the Lebesgue measure over the image of C. An elliptical distribution with mean c
and scale parameter C is a probability measure of the form

dµg,c,C(x) = g(‖x− c‖2C†)dλImC(x), (1.5)

where g : Rd → R+ satisfies
∫

ImC g(‖x‖2C†)dλImC(x) = 1 and C† is the Moore-Penrose
pseudo-inverse of C.

A predating definition, less intuitive but more compact, relies on the characteristic
function of a random vector: φX

def
= t ∈ Rd 7→ EX [eit

TX ]. Recalling that the characteristic
function of a centered multivariate Gaussian random vector is eitT cgtTCt with g = exp(−·/2),
the intuition behind this definition is to allow the function g to be picked in a broader class.
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Definition 1.11 (Elliptical Distributions, [Cambanis et al., 1981]). A random vector X is
elliptically-contoured if there exist c ∈ Rd, C ∈ Sd+ and a function g : R+ → R such that
its characteristic function is of the form φX(t) = eit

T cg(et
TCt).

Both Definitions 1.10 and 1.11 generalize the initial intuition by encompassing degenerate
measures. Hence, an elliptical distribution is fully characterized by its mean c ∈ Rd, scale
parameter C ∈ Sd+, and generating function g (defined in either Definition 1.10’s or
Definition 1.11’s formalism). When two elliptical distributions share the same generating
function g, they are said to belong to the same family of elliptical distributions. Examples
of families include (multivariate) Gaussian distributions, (multivariate) t-distributions, or
uniform distributions supported on ellipsoids.

Remark 1.12. From the analogy with Gaussian measures, one could expect the covariance
matrix Σg,C of an elliptically-contoured random vector to be equal to its scale parameter
C. It is in fact equal to τgC, where τg > 0 depends on the generating function g only.
In the setting of Definition 1.11, one has τg = −2g′(0) [Cambanis et al., 1981, Theorem
4.]. τg can also be written in Definition 1.10’s setting, but has a less compact formulation
[Gelbrich, 1990, Equation (14)]. As examples, in Gelbrich’s formalism g(x) ∝ exp(−x/2)
yields τg = 1 and corresponds to Gaussian measures, whereas g(x) ∝ 1x≤1 yields τg = 1

d+2
and corresponds to d-dimensional ellipsoids of radius 1 endowed with a uniform measure.

2.2 The Bures-Wasserstein distance

In independent seminal works, Dowson and Landau [1982], Olkin and Pukelsheim [1982] and
Givens et al. [1984] showed that the 2-Wasserstein distance between multivariate Gaussian
distributions admits a closed form, known as the Bures-Wasserstein distance or also the
Fréchet distance. Although not stated in those terms, their results also provide a closed
form for the Monge map between two Gaussian measures. All three proofs rely on a version
of Lemma 1.19, which expresses the maximal possible covariance between two random
vectors. Gelbrich [1990] then extended these results to any two (potentially degenerate)
elliptical distributions from the same family.

Theorem 1.13 (Gelbrich [1990]). Let g : R+ → R as in Definition 1.10. Then for any
two members of the same elliptical family, the 2-Wasserstein distance has a closed form:
∀a,b ∈ Rd,∀A,B ∈ Sd+,

W 2
2 (µg,a,A, µg,b,B) = ‖a− b‖2 + B2(Σg,A,Σg,B), (1.6)

where Σg,A = τgA (Remark 1.12), and

B2(A,B)
def
= TrA + TrB− 2Tr(A

1
2 BA

1
2 )

1
2 (1.7)

is the Bures [Bures, 1969, Bhatia et al., 2018] metric on the cone of PSD matrices.

By homogeneity of the Bures metric and following Remark 1.12, the Wasserstein-Bures
distance can alternatively be formulated in terms of scale parmeters as

W 2
2 (µg,a,A, µg,b,B) = ‖a− b‖2 + τgB

2(A,B).

Remark 1.14 (Particular cases). When A and B commute, (1.7) further simplifies to
the Frobenius distance between matrix roots: B2(A,B) = ‖A1/2 −B1/2‖2F . When they are
both diagonal matrices, this quantity is called the Hellinger distance. When the covariance
matrices go to 0 (and distributions converge to Dirac distributions), one recovers the L2

distance between the means.
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Proposition 1.15. Let µg,a,A and µg,b,B be two elliptical distributions from the same
family, such that ImB ⊂ ImA. Then, the map T : x 7→ TAB(x− a) + b with

TAB def
= A

†
2 (A

1
2 BA

1
2 )

1
2 A
†
2 (1.8)

is the optimal Monge map from µg,a,A to µg,b,B, where A
†
2 is the Moore-Penrose pseudo-

inverse of A
1
2 .

Proof. This is a direct consequence of Brenier’s theorem [Brenier, 1987] and of Lemma 1.20
below.

Note that contrary to the Bures distance, the Monge map (1.8) is scale invariant and
can interchangeably be formulated using scale parameters or covariance matrices. In the
remainder of this thesis, the dagger notation will be dropped and A−1 will denote the
inverse of A when it exists, and its pseudo-inverse otherwise.

Remark 1.16 (Matrix square roots). For symmetric positive semi-definite (PSD) matrices,
square roots can be defined using the eigenvalue decomposition: if A = P diag(λ1, ..., λd)P

T ,

then A1/2 def
= P diag(

√
λ1, ..., λd)P

T . In this thesis, square roots of non-symmetric matrices
A with no eigenvalues in R− will sometimes be considered: in that case, they will always be
the unique square root of A with all eigenvalues in R+ [Higham, 2008, Theorem 1.29].

Remark 1.17. The ImB ⊂ ImA assumption is required in Proposition 1.15 but not in
Theorem 1.13. Indeed, consider two cases. First, if rkB > rkA, then no transport map
going from µg,a,A to µg,b,B exists, since it is informally impossible to create mass in more
dimensions than covered by µg,a,A through the action of a map. Secondly, when rkB = rkA
but ImB 6⊂ ImA, transport maps exist but take other forms, as ImTAB ⊂ ImA. However,
Theorem 1.13 remarkably remains valid in either case, corresponding to the cost of the
optimal coupling.

The Bures-Wasserstein distance corresponds to the equality case of a lower bound on
the Wasserstein distance, as originally proven by Dowson and Landau [1982].

Proposition 1.18 (Dowson and Landau [1982]). Let µ, ν ∈ P2(Rd) be two centered
probability measures with covariance matrices A,B ∈ Sd+. Then,

B2(A,B) ≤ EX∼µ
Y∼ν
‖X − Y ‖2 ≤ Tr(A + B + 2(A

1
2 BA

1
2 )

1
2 ). (1.9)

An important fact is that Proposition 1.18 is not restricted to elliptical distributions,
but is applicable to any pair of probability measures with finite second order moments. In
particular, it implies that if µ (resp. ν) has mean vector a (resp. b) and covariance matrix
A (resp. B), then

‖a− b‖2 + B2(A,B) ≤W 2
2 (A,B).

Hence, even for distributions that are not elliptically-contoured, the Bures-Wasserstein
distance is a quantity of interest, as it provides a lower bound on the transport cost. Under
the lens of Lemma 1.19, this lower bound can be seen as the cost of optimally matching the
first two moments of µ and ν. The RHS of (1.9) gives information on the worst possible
coupling (in a quadratic cost sense) between two distributions. However, from an optimal
transport perspective it is not so informative, as the Wasserstein distance can always be
bounded from above by the cost of the indepedent coupling µ⊗ ν:

W 2
2 (A,B) ≤ ‖a− b‖2 + TrA + TrB.
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2.2.1 The Bures distance on PSD matrices

The definition of the Bures distance originates from quantum information theory, where it
is used to measure the distance between two states represented by PSD density matrices
with trace 1 [Bures, 1969, Bengtsson and Życzkowski, 2017]. In the context of quantum
information theory, the quantity F (A,B) such that B2(A,B) = TrA + TrB− 2F (A,B),

F (A,B)
def
= Tr(A

1
2 BA

1
2 )

1
2 = Tr(AB)

1
2 ,

is called the fidelity between states A and B. In an optimal transport perspective, the
fidelity represents the maximal attainable covariance.

Lemma 1.19 (Olkin and Pukelsheim [1982], Bhatia et al. [2018]). Let A,B ∈ Sd++. Then,

F (A,B) = max
C:
(

A C
CT B

)
≥0

TrC, (1.10)

and the maximum is attained at C = ATAB = (AB)1/2.

An alternative characterization of the Monge map TAB is provided by the following
lemma.

Lemma 1.20. Let A,B ∈ Sd++ (resp. A,B ∈ Sd+ s.t. ImB ⊂ ImA). Then

TAB = A−
1
2 (A

1
2 BA

1
2 )

1
2 A−

1
2

= B
1
2 (B

1
2 AB

1
2 )−

1
2 B

1
2

is the unique symmetric positive (resp. semi-)definite solution of TATT = B.

Proof. One can check that TAB satisfies TABATAB = B in either formulation. The
uniqueness can be proven from the existence of a unique symmetric positive definite root
of A1/2BA1/2 or

(
B1/2AB1/2

)−1, and incidentally proves that both expressions of TAB

are indeed equal.

Lemma 1.20 proves that TAB is the Monge map from N (0,A) to N (0,B) with a
quadratic cost. Indeed, let T be a linear map, and X a random vector with covariance
matrix A. Then, TX has covariance matrix TATT . Hence, Lemma 1.20 shows that TAB

is a transport map from N (0,A) to N (0,B). According to Theorem 1.4, it is a Monge
map i.f.f. it is the gradient of a convex function, which is the case as TAB is symmetric
and positive definite.

Further, Lemma 1.19 provides a direct proof of the LHS inequality of Proposition 1.18:
indeed, if µ and ν are centered measures with covariance matrices A,B and γ ∈ Π(µ, ν, ),
then

E(X,Y )∼γ‖X − Y ‖2 = TrA + TrB− 2Tr Cov(X,Y )∼γ(X,Y ),

and Tr Cov(X,Y )∼γ(X,Y ) can be bounded from above using Lemma 1.19. Further,
Lemma 1.19 shows that E(X,Y )∼γ‖X − Y ‖2 = B2(A,B) if and only if the covariance

matrix of γ is
(

A ATAB

TABA B

)
, i.e. i.f.f. γ is the law of (X,TABX). Hence, given that if

Cov(X) = A then Cov(TX) = TATT , Lemmas 1.19 and 1.20 yield another interpretation
of the Bures-Wasserstein distance: it is the minimal quadratic transportation cost associated
with matching the first two moments of two measures µ and ν through the action of a map.
Under this perspective, it is thus natural that the Bures-Wasserstein distance coincides with
the Wasserstein distance for elliptical distributions of a given family, which are uniquely
characterized by their means and covariances.

Another consequence of Lemma 1.19 is the joint convexity of the (squared) Bures
distance, which can be obtained from writing problem (1.10) in a dual formulation.
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Proposition 1.21. The squared Bures distance B2(A,B) is jointly convex in A and B.

Proof. Problem (1.10) can be equivalently rewritten using the variable X =
(

X1 X2
X3 X4

)
as

F (A,B) = 1
2 max
X≥0

X1=A,X4=B

〈X,
(

0 Id
Id 0

)
〉.

Strong duality holds, and this problem can be shown to admit the following dual
formulation:

F (A,B) = 1
2 min(

F −Id
−Id G

)
≥0

〈F, A〉+ 〈G, B〉. (1.11)

Hence, the fidelity F (A,B) can be written as the pointwise infimum of linear functionals
in (A,B). Therefore, it is jointly concave in A and B, which makes B2(A,B) jointly
convex.

Proposition 1.22. Let A,B ∈ Sd++. Then ∇AB2(A,B) = Id −TAB.

Proof. This can be proven by direct calculus, as in Section 5. Alternatively, we can use
problem (1.11) to obtain ∇AF (A,B) = 1

2F? = 1
2TAB [Bhatia et al., 2018].

Riemannian structure. The Bures distance is actually a Riemmanian3 metric on PSD
matrices. From this fact it can be shown that the Wasserstein space of Gaussian measures
is itself a Riemmanian manifold [Takatsu, 2011].

Proposition 1.23 (Bhatia et al. [2018], Malagò et al. [2018]). The Bures distance defines
a Riemannian metric over the cone of PSD matrices, with associated metric tensor

GA(U,V) = Tr(LA(U)V),

where LA(U) is the solution of the Lyapunov equation XA + AX = U. When A,B ∈ Sd+
satisfy ImB ⊂ ImA, the Bures geodesic from A to B is given by

CA→B(t) = [(1− t)Id + tTAB]A[(1− t)Id + tTAB], t ∈ [0, 1], (1.12)

and the exp and log maps of the Riemannian Bures metric are given by

expC(V) = (LC(V) + Id) C (LC(V) + Id) (1.13)

logC(B) =
(
TCB − Id

)
C + C

(
TCB − Id

)
. (1.14)

Bures-Wasserstein barycenters. We conclude this section by mentioning the Bures-
Wasserstein barycenter problem, which is characterized by a fixed-point equation. In
Chapter 4, we extend this result to (debiased) entropy-regularized OT between Gaussian
measures.

Theorem 1.24 (Agueh and Carlier [2011, Theorem 6.1]). Let n > 0 and ∀i ∈ J1, nK, λi ∈
R+,Ai ∈ Sd++, µi = N (0,Ai) with

∑
i λi = 1. Then, the Wasserstein barycenter problem

min
ν∈P2(Rd)

n∑

i=1

λiW
2
2 (µi, ν) (1.15)

3We refer to the textbook [Lee, 1997] for an introduction to Riemmanian geometry.
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admits a unique solution ν? = N (0,B), where B is the unique solution of the Bures
barycenter problem

min
B∈Sd++

n∑

i=1

λiB
2(Ai,B), (1.16)

which is characterized by the equation

n∑

i=1

λi(BAiB)
1
2 = B,

or equivalently

n∑

i=1

λiT
BAi = Id.

Theorem 1.24 can be extended to elliptical distribution, with the same relations on the
covariance matrices or scale parameters. Further, Álvarez-Esteban et al. [2016] show that
the solution of (1.16) can be obtained by the fixed-point iteration

Bn+1 = B−1/2
n

(
n∑

i=1

λi(B
1/2
n AiB

1/2
n )

1
2

)2

B−1/2
n .

3 Entropic Regularization of Optimal Transport

As mentioned in Section 1.2, OT distances can be expensive to compute, even in the
relatively simple discrete setting. Besides, they suffer from a lack of differentiability that is
detrimental to applications in machine learning. Starting from Cuturi [2013], the prevalent
approach has consisted in adding an entropic regularization term to the optimal transport
problem, which ensures its differentiability and allows the use of efficient algorithms. Let
ε > 0 be the regularization strength, the entropy-regularized optimal transport problem is
defined as

OTε(µ, ν)
def
= inf

γ∈Π(µ, ν)

∫∫

Rd×Rd

c(x, y)dγ(x, y) + εKL(γ‖µ⊗ ν), (Ent-OT)

where KL(γ‖µ⊗ ν)
def
=

∫∫
Rd×Rd

log
(

dγ(x,y)
dµ(x)dν(y)

)
dγ(x, y) +

∫∫
Rd×Rd

(dµ(x)dν(y)− dγ(x, y)) is the

Kullback-Leibler (KL) divergence. As the KL divergence is strictly convex in its first
argument, this regularization term turns (K) into the strictly convex problem (Ent-OT).
In particular, strong duality holds. The dual problem of (Ent-OT) plays an important role
in characterizing the additional properties induced by entropic regularization.

Proposition 1.25. Strong duality holds, and (Ent-OT) has the following dual form

max
f,g∈C(Rd)

∫

Rd
fdµ+

∫

Rd
gdν − ε

∫∫

Rd×Rd

e
f(x)+g(y)−c(x,y)

ε dµ(x)dν(y). (1.17)

At optimality, the dual variables f, g are linked to the optimal transport plan π for (Ent-OT)
via the following relation:

dπ(x, y) = exp

(
f(x) + g(y)− c(x, y)

ε

)
dµ(x)dν(y), (1.18)
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and f, g satisfy

f(x) = −ε log

∫

Rd
e
g(y)−c(x,y)

ε dν(y) µ− a.e.

g(y) = −ε log

∫

Rd
e
f(x)−c(x,y)

ε dµ(x) ν − a.e.
(1.19)

A detailed proof of Proposition 1.25 (generalized to alternative regularization terms)
can be found in [Chizat, 2017, Genevay, 2019].

Discrete entropic OT. Entropic regularization was initially introduced by Cuturi [2013]
in the discrete setting:

min
P∈U(a,b)

〈P, C〉+ ε
∑

i,j

pij log

(
pij
aibj

)
, (1.20)

with two main motivations: (i) allowing a fast approximation of OT and (ii) ensuring
smoothness and differentiability of OT [Peyré et al., 2019]. Propositions 1.26 and 1.27 show
that this convexification allows both objectives to be attained.

Proposition 1.26 (Cuturi [2013], Peyré et al. [2019]). Let α =
∑n

i=1 aiδxi and β =∑m
j=1 bjδyj be two discrete distributions, and ε > 0. Then, (Ent-OT) admits a unique

solution P which is of the form

P = diag(u)K diag(v), (1.21)

with K
def
= [exp(− c(xi,yj)

ε )]i,j ∈ Rn×m+ and u ∈ Rn+,v ∈ Rm+ can be obtained using the
fixed-point iterations

u(l+1) =
1

K(v(l) � b)
and v(l+1) =

1

KT (u(l+1) � a)
. (1.22)

The iterations (1.22) are known as Sinkhorn’s algorithm, after Sinkhorn [1964] who first
proved their convergence. With the notations fi = f(xi),gj = g(yj) and cij = c(xi, yj), the
variables u,v in Equation (1.21) are linked to f, g in Equation (1.17) through the relations

u = [exp(fi/ε)]i∈J1,nK, v = [exp(gj/ε)]j∈J1,mK, (1.23)

and are sometimes called the exponential scalings. Hence, with this parameterization
Sinkhorn’s algorithm is equivalent to iteratively enforcing (1.19). Sinkhorn’s algorithm
is easy to implement and can be efficiently parallelized using graphics processing units
(GPU) [Cuturi, 2013], but is numerically unstable for small values of ε. In that case, it can
be run in the log-domain: this yields the iterations

∀i ∈ J1, nK, f
(l+1)
i = −ε log

m∑

j=1

bj exp((g
(l)
j − cij)/ε), (1.24)

∀j ∈ J1,mK, g
(l+1)
j = −ε log

n∑

i=1

ai exp((f
(l+1)
i − cij)/ε). (1.25)

The KL regularization term encourages the optimal plan to put mass on the whole
support of µ⊗ν. As shown in Figure 1.4 in the discrete case, this yields transportation plans
with strictly positive entries everywhere, whereas unregularized transportation plans are
sparse, with at most n+m non-zero entries (see Section 1.2). Moreover, KL regularization
ensures the uniqueness of a solution, and hence (by Danskin’s theorem [Danskin, 1967])
the differentiability of (Ent-OT).
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Proposition 1.27 (Gradients, Cuturi and Doucet [2014]). Let α =
∑n

i=1 aiδxi and β =∑m
j=1 bjδyj . Then, OTε is jointly convex w.r.t. (a,b) and differentiable, with gradients

∇(a,b)OTε(α, β) = (f ,g), (1.26)

where (f ,g) satisfies (1.19). If c(x, y) = 1
2‖x− y‖2, the gradients w.r.t. the supports are

given by

∀i ∈ J1, nK, ∇xiOTε(α, β) =
1

ai

m∑

j=1

pij(xi − yj),

∀j ∈ J1,mK, ∇yjOTε(α, β) =
1

bj

n∑

i=1

pij(yj − xi),

where P is the optimal plan in (Ent-OT).

↵ =
nX

i=1

ai�xi
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(b) (Ent-OT)

Figure 1.4: Effect of regularization on transportation plan density. Left : unregularized
(sparse) OT plan. Right : regularized (dense) entropic OT plan.

Proposition 1.27 shows that entropy-regularized OT constitutes a suitable loss function
for machine learning [Frogner et al., 2015], contrary to classical unregularized OT which
is not differentiable. In practice, two strategies can be used to compute gradients: the
first consists in using the dual potentials given by Sinkhorn’s algorithm (in virtue of
Proposition 1.27), while the second consists in performing automatic differentiation on the
Sinkhorn iterations, which is the approach suggested in Genevay et al. [2018]. The latter
method has a computational overhead equivalent to computing the (forward) Sinkhorn
iterations, but recent research [Ablin et al., 2020] shows that better approximations of the
gradients can be obtained that way.

Finally, Proposition 1.26 shows that entropic regularization allows to compute fast and
differentiable transportation plans. However, a remaining question concerns which quantity
to use to measure the difference between two distributions based on those entropic plans.
Indeed, OTε is symmetric and has the advantage of having easily computable gradients,
but it is no longer a distance as it does not satisfy the triangle inequality, nor even a
divergence as it is not positive.4 To alleviate the positivity issue, [Cuturi, 2013] propose to
use OT

(sharp)
ε

def
= 〈Pε, C〉, where Pε is the solution of Equation (1.20). Luise et al. [2018]

name this quantity sharp Sinkhorn and provide an algorithm to compute its gradients.
OT

(sharp)
ε is positive, but OT

(sharp)
ε (α, α) can be strictly positive and hence sharp Sinkhorn

is not a divergence.
Genevay et al. [2018] proposed to subtract debiasing terms from OTε, defining the

Sinkhorn divergence:

Sε(µ, ν)
def
= OTε(µ, ν)− 1

2(OTε(µ, µ) + OTε(ν, ν)).

4In particular, for ε > 0, OTε(α, α) ≤ 0 and can be strictly negative.
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Feydy et al. [2019] then proved that the Sinkhorn divergence defines a suitable loss
function.

Proposition 1.28 (Feydy et al. [2019] (Simplified)). Let c(x, y) = ‖x− y‖p, p ≥ 1. Then
for all compactly supported µ, ν ∈ P(Rd), Sε(µ, ν) defines a symmetric positive definite
divergence, which is convex in µ or ν (but not jointly), and metrizes weak convergence.

Hence, short of the triangle inequality, Sinkhorn divergences possess all the properties
that make Wasserstein distances suitable losses between distributions in a machine learning
context. Further, Feydy et al. [2019] show that the computational overhead induced by
computing OTε(µ, µ) and OTε(ν, ν) terms is limited, as Sinkhorn iterations can be adapted
in a symmetric variant to obtain faster convergence. Chapter 5 will make heavy use of the
favorable properties of Sinkhorn divergences.

Semi-discrete and continuous entropic transport. Although its computational ad-
vantages are most apparent in a fully discrete setting, entropic regularization has also been
used to develop methods for the semi-discrete and continuous settings. In the semi-discrete
setting, entropic regularization leads to replacing the indicator functions of Laguerre cells
with a smoothed version [Peyré et al., 2019], resulting in a stochastic optimization problem
which is amenable for stochastic gradient methods [Genevay et al., 2016]. In the continuous
setting however, (Ent-OT) can no longer directly be cast as a stochastic optimization
problem. A stochastic formulation can be obtained again by approximating the dual form of
(4.1) using a kernel representation, which allows to use stochastic gradient methods [Genevay
et al., 2016], an approach which was refined by Mensch and Peyré [2020]. In Chapter 4,
closed forms for entropy-regularized optimal transport between Gaussian measures are
proven, which constitute the first non-trivial closed forms in the continuous setting.

Alternative regularizations. As discussed in this section, entropic regularization allows
to define approximations of OT distances that are differentiable, and to compute them
efficiently using Sinkhorn’s algorithm. However, the differentiability can be achieved
using a wider range of strictly convex regularization functions R on the transportation
plans [Blondel et al., 2018, Dessein et al., 2018, Muzellec et al., 2017]:

ROTRε (µ, ν)
def
= min

γ∈Π(µ, ν)

∫∫

Rd×Rd

c(x, y)dγ(x, y) + εR(γ). (1.27)

While only entropy-regularized OT can be solved using Sinkhorn’s algorithm, solutions
to (1.27) are usually computed using dual ascent methods. This implies that ROT is in
general less practical to compute or approximate than entropic OT. The main motivation
behind ROT is rather to consider regularization functions which are sparsity-preserving in a
discrete setting. In particular, Blondel et al. [2018] show that squared-norm regularization
allows to retain most of the sparsity of unregularized OT plans, while leading to differentiable
quantities.

Unbalanced optimal transport. So far, only regularization of couplings with exact
marginals have been considered, i.e. with the constraint γ ∈ Π(µ, ν). An additional step in
relaxing OT consists in replacing couplings with positive measures that have free marginals
and total mass, and penalizing the difference between the marginals and the original
measures according to some divergence. Chizat [2017] considers in particular an unbalanced
problem with entropic regularization on the transportation plan, and penalization of the
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marginals with φ-divergences [Csiszár, 1975]:

UOTε,τ (µ, ν)
def
= min

γ∈M(Rd×Rd)

{ ∫∫

Rd×Rd

c(x, y)dγ(x, y) + εKL(γ‖µ⊗ ν)

+ τDφ2(π1]γ‖µ) + τDφ1(π2]γ‖ν)
}
,

(U-OT)

where Dφ(µ‖ν)
def
=
∫
Rd φ

(
dµ(x)
dν(x)

)
dν(x), and the KL divergence is generalized to positive

measures: KL(µ‖ν) =
∫
Rd log

(
dµ(x)
dν(x)

)
dµ(x)−

∫
Rd dµ+

∫
Rd dν, i.e. KL = Dφ with φ(x) =

x log x−x+ 1. (U-OT) can be seen as (Ent-OT) where mass creation or deletion is allowed
along with mass transportation. This intuition is formalized from a dynamical transport
point of view in [Chizat et al., 2018a].

In the particular case where Dφ1 = Dφ2 = KL, the optimal plan is of the form
dπ(x, y) = e

f(x)+g(y)−c(x,y)
ε dµ(x)dν(y), where f, g ∈ C(Rd) satisfy

f(x) = −ρτ log

∫

Rd
e
g(y)−c(x,y)

ε dν(y) µ− a.e.

g(y) = −ρτ log

∫

Rd
e
f(x)−c(x,y)

ε dµ(x) ν − a.e.
(1.28)

with ρ def
= τ

τ+ε . Hence, in the discrete setting, (U-OT) can be solved using the generalized
Sinkhorn iterations

u(l+1) =

(
1

K(v(l) � b)

)ρ
and v(l+1) =

(
1

KT (u(l+1) � a)

)ρ
, (1.29)

with K = exp (−C/ε) ,u = exp(f/ε), and v = exp(g/ε).
In Chapter 4, closed forms for (Ent-OT) and (U-OT) are proved for Gaussian measures

based on Sinkhorn-like fixed-point equations.





Chapter 2

Embeddings in the Wasserstein
Space of Elliptical Distributions

Embedding complex objects as vectors in low dimensional spaces is a longstanding problem
in machine learning. We propose in this chapter an extension of that approach, which
consists in embedding objects as elliptical probability distributions, namely distributions
whose densities have elliptical level sets. We endow these measures with the 2-Wasserstein
metric, with two important benefits:

(i) For such measures, the squared 2-Wasserstein metric has a closed form, equal to a
weighted sum of the squared Euclidean distance between means and the squared
Bures metric between covariance matrices. The latter is a Riemannian metric between
positive semi-definite matrices, which turns out to be Euclidean on a suitable factor
representation of such matrices, which is valid on the entire geodesic between these
matrices;

(ii) The 2-Wasserstein distance boils down to the usual Euclidean metric when comparing
Diracs, and therefore provides a natural framework to extend point embeddings.

We show that for these reasons Wasserstein elliptical embeddings are more intuitive
and yield tools that are better behaved numerically than the alternative choice of Gaussian
embeddings with the Kullback-Leibler divergence. In particular, and unlike previous work
based on the KL geometry, we learn elliptical distributions that are not necessarily diagonal.
We demonstrate the advantages of elliptical embeddings by using them for visualization, to
compute embeddings of words, and to reflect entailment or hypernymy.

This chapter is based on [Muzellec and Cuturi, 2018]. In this original work, Newton-
Schulz (NS) iterations were utilized to obtain the matrix roots and inverse roots required
for the computation of the Bures distance and its gradient. In this updated version, we use
NS iterations to directly obtain Monge maps and inverse maps, resulting in a more efficient
numerical scheme.

47
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1 Introduction

One of the holy grails of machine learning is to compute meaningful low-dimensional
embeddings for high-dimensional complex data. That ability has recently proved crucial
to tackle more advanced tasks, such as for instance: inference on texts using word embed-
dings [Mikolov et al., 2013b, Pennington et al., 2014, Bojanowski et al., 2017], improved
image understanding [Norouzi et al., 2014], representations for nodes in large graphs [Grover
and Leskovec, 2016].

Such embeddings have been traditionally recovered by seeking isometric embeddings
in lower dimensional Euclidean spaces, as studied in [Johnson and Lindenstrauss, 1984,
Bourgain, 1985]. Given n input points x1, . . . , xn, one seeks as many embeddings y1, . . . ,yn
in a target space Y = Rd whose pairwise distances ‖yi−yj‖2 do not depart too much from
the original distances dX (xi, xj) in the input space. Note that when d is restricted to be 2 or
3, these embeddings (yi)i provide a useful way to visualize the entire dataset. Starting with
metric multidimensional scaling (mMDS) [De Leeuw, 1977, Borg and Groenen, 2005], several
approaches have refined this intuition [Tenenbaum et al., 2000, Roweis and Saul, 2000, Hinton
and Roweis, 2003, Maaten and Hinton, 2008]. More general criteria, such as reconstruction
error [Hinton and Salakhutdinov, 2006, Kingma and Welling, 2014]; co-occurence [Globerson
et al., 2007]; or relational knowledge, be it in metric learning [Weinberger and Saul, 2009]
or between words [Mikolov et al., 2013b] can be used to obtain vector embeddings. In
such cases, distances ‖yi − yj‖2 between embeddings, or alternatively their dot-products
〈yi, yj〉 must comply with sophisticated desiderata. Naturally, more general and flexible
approaches in which the embedding space Y needs not be Euclidean can be considered,
for instance in generalized MDS on the sphere [Maron et al., 2010], on surfaces [Bronstein
et al., 2006], in spaces of trees [Bădoiu et al., 2007, Fakcharoenphol et al., 2003] or, more
recently, computed in the Poincaré hyperbolic space [Nickel and Kiela, 2017].

Probabilistic Embeddings. Our work belongs to a recent trend, pioneered by Vilnis
and McCallum, who proposed to embed data points as probability measures in Rd [2015],
and therefore generalize point embeddings. Indeed, point embeddings can be regarded as a
very particular—and degenerate—case of probabilistic embedding, in which the uncertainty
is infinitely concentrated on a single point (a Dirac). Probability measures can be more
spread-out, or event multimodal, and provide therefore an opportunity for additional
flexibility. Naturally, such an opportunity can only be exploited by defining a metric,
divergence or dot-product on the space (or a subspace thereof) of probability measures.
Vilnis and McCallum proposed to embed words as Gaussians endowed either with the
Kullback-Leibler (KL) divergence or the expected likelihood kernel [Jebara et al., 2004]. The
Kullback-Leibler and expected likelihood kernel on measures have, however, an important
drawback: these geometries do not coincide with the usual Euclidean metric between point
embeddings when the variances of these Gaussians collapse. Indeed, the KL divergence and
the `2 distance between two Gaussians diverges to ∞ or saturates when the variances of
these Gaussians become small. To avoid numerical instabilities arising from this degeneracy,
Vilnis and McCallum must restrict their work to diagonal covariance matrices. In a
concurrent approach, Singh et al. represent words as distributions over their contexts in
the optimal transport geometry [Singh et al., 2020].

Contributions. We propose in this work a new framework for probabilistic embeddings,
in which point embeddings are seamlessly handled as a particular case. We consider arbitrary
families of elliptical distributions, which subsume Gaussians, and also include uniform
elliptical distributions, which are arguably easier to visualize because of their compact
support. Our approach uses the 2-Wasserstein distance to compare elliptical distributions.
The latter can handle degenerate measures, and both its value and its gradients admit



2. THE GEOMETRY OF ELLIPTICAL DIST. IN THE WASSERSTEIN SPACE 49

closed forms [Gelbrich, 1990], either in their natural Riemannian formulation, as well as in
a more amenable local Euclidean parameterization. We provide numerical tools to carry
out the computation of elliptical embeddings in different scenarios, both to optimize them
with respect to metric requirements (as is done in multidimensional scaling) or with respect
to dot-products (as shown in our applications to word embeddings for entailment, similarity
and hypernymy tasks) for which we introduce a proxy using a polarization identity.

2 The Geometry of Elliptical Distributions in the
Wasserstein Space

We recall in this section basic facts about elliptical distributions in Rd. We adopt a general
formulation that can handle measures supported on subspaces of Rd as well as Dirac
(point) measures. That level of generality is needed to provide a seamless connection
with usual vector embeddings, seen in the context of this chapter as Dirac masses. We
recall results from the literature showing that the squared 2-Wasserstein distance between
two distributions from the same family of elliptical distributions is equal to the squared
Euclidean distance between their means plus the squared Bures metric between their scale
parameter scaled by a suitable constant.

Elliptically-contoured densities. In their simplest form, elliptical distributions can be
seen as generalizations of Gaussian multivariate densities in Rd: their level sets describe
concentric ellipsoids, shaped following a scale parameter C ∈ Sd++, and centered around a
mean parameter c ∈ Rd [Cambanis et al., 1981]. The density at a point x of such distribu-
tions is f(‖x−c‖C−1)/

√
|C| where the generator function f is such that

∫
Rd f(‖x‖2)dx = 1.

Gaussians are recovered with f = g, g(·) ∝ e−·/2 while uniform distributions on full rank
ellipsoids result from f = u, u(·) ∝ 1· ≤1.

Because the norm induced by C−1 appears in formulas above, the scale parameter C
must have full rank for these definitions to be meaningful. Cases where C does not have full
rank can however appear when a probability measure is supported on an affine subspace1

of Rd, such as lines in R2, or even possibly a space of null dimension when the measure is
supported on a single point (a Dirac measure), in which case its scale parameter C is 0.
We provide in what follows a more general approach to handle these degenerate cases.

Elliptical distributions. To lift this limitation, several reformulations of elliptical distri-
butions have been proposed to handle degenerate scale matrices C of rank rkC < d. Gelbrich
[1990, Theorem 2.4] defines elliptical distributions as measures with a density w.r.t the
Lebesgue measure of dimension rkC, in the affine space c + ImC, where the image of C is
ImC

def
= {Cx,x ∈ Rd}. This approach is intuitive, in that it reduces to describing densities

in their relevant subspace. A more elegant approach uses the parameterization provided
by characteristic functions [Cambanis et al., 1981, Fang et al., 1990]. In a nutshell, recall
that the characteristic function of a multivariate Gaussian is equal to φ(t) = eit

T cg(tTCt)
where, as in the paragraph above, g(·) = e−·/2. A natural generalization to consider
other elliptical distributions is therefore to consider for g other functions h of positive
type [Ushakov, 1999, Theo.1.8.9], such as the indicator function u above, and still apply
them to the same argument tTCt. Such functions are called characteristic generators and
fully determine, along with a mean c and a scale parameter C, an elliptical measure. This
parameterization does not require the scale parameter C to be invertible, and therefore
allows to define probability distributions that do not have necessarily a density w.r.t to

1For instance, the random variable Y in R2 obtained by duplicating the same normal random variable
X in R, Y = [X,X], is supported on a line in R2 and has no density w.r.t the Lebesgue measure in R2.
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Figure 2.1: Five measures from the family of uniform elliptical distributions in R3. Each
measure has a mean (location) and scale parameter. In this carefully selected example, the
reference measure (with scale parameter A) is equidistant (according to the 2-Wasserstein
metric) to the four remaining measures, whose scale parameters B0,B1,B2,B3 have ranks
equal to their indices (here, v = [3, 7,−2]T ).

the Lebesgue measure in Rd. Both constructions are relatively complex, and we refer the
interested reader to these references for a rigorous treatment.

Rank-deficient elliptical distributions and their variances. For the purpose of this
work, we will only require the following result: the variance of an elliptical measure is
equal to its scale parameter C multiplied by a scalar that only depends on its characteristic
generator. Indeed, given a mean vector c ∈ Rd, a scale semi -definite matrix C ∈ Sd+ and a
characteristic generator function h, we define µh,c,C to be the measure with characteristic
function t 7→ eit

T ch(tTCt). In that case, one can show that the covariance matrix of µh,c,C
is equal to its scale parameter C times a constant τh that only depends on h, namely

var(µh,c,C) = τhC . (2.1)

For Gaussians, the scale parameter C and its covariance matrice coincide, that is τg = 1.
For uniform elliptical distributions, one has τu = 1/(d+ 2): the covariance of a uniform
distribution on the volume {c + Cx,x ∈ Rd, ‖x‖ ≤ 1}, such as those represented in
Figure 2.1, is equal to C/(d+ 2).

The 2-Wasserstein Bures metric. A natural metric for elliptical distributions arises
from optimal transport (OT) theory. We refer interested readers to [Santambrogio, 2015,
Peyré et al., 2019] for exhaustive surveys on OT. Recall that for two arbitrary probability
measures µ, ν ∈ P(Rd), their squared 2-Wasserstein distance is equal to

W 2
2 (µ, ν)

def
= inf

X∼µ,Y∼ν
E‖X−Y ‖22 .

This formula rarely has a closed form. However, in the footsteps of Dowson and Landau
[1982] who proved it for Gaussians, Gelbrich [1990] showed that for α def

= µh,a,A and
β

def
= µh,b,B in the same family Ph = {µh,c,C, c ∈ Rd,C ∈ Sd+}, one has

W 2
2 (α, β) = ‖a− b‖22 + B2(varα, varβ)

= ‖a− b‖22 + τhB
2(A,B),

(2.2)
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where B2 is the (squared) Bures metric on Sd+, proposed in quantum information geome-
try [1969] and studied recently in [Bhatia et al., 2018, Malagò et al., 2018],

B2(X,Y)
def
= Tr(X + Y − 2(X

1
2 YX

1
2 )

1
2 ). (2.3)

The factor τh next to the rightmost term B2 in (2.2) arises from homogeneity of B2 in its
arguments (2.3), which is leveraged using the identity in (2.1).

A few remarks.

(i) When both scale matrices A = diag dA and B = diag dB are diagonal, W 2
2 (α, β) is

the sum of two terms: the usual squared Euclidean distance between their means,
plus τh times the squared Hellinger metric between the diagonals dA,dB:

H2(dA,dB)
def
= ‖

√
dA −

√
dB‖22.

(ii) The distance W2 between two Diracs δa, δb is equal to the usual distance between
vectors ‖a− b‖2.

(iii) The squared distance W 2
2 between a Dirac δa and a measure µh,b,B in Ph reduces

to ‖a − b‖2 + τhTrB. The distance between a point and an ellipsoid distribution
therefore always increases as the scale parameter of the latter increases. Although
this point makes sense from the quadratic viewpoint of W 2

2 (in which the quadratic
contribution ‖a−x‖22 of points x in the ellipsoid that stand further away from a than
b will dominate that brought by points x that are closer, see Figure 2.3) this may be
counterintuitive for applications to visualization, an issue that will be addressed in
Section 4.

(iv) The W2 distance between two elliptical distributions in the same family Ph is always
finite, no matter how degenerate they are. This is illustrated in Figure 2.1 in which
a uniform measure µa,A is shown to be exactly equidistant to four other uniform
elliptical measures, some of which are degenerate. However, as can be hinted by the
simple example of the Hellinger metric, that distance may not be differentiable for
degenerate measures (in the same sense that (

√
x−√y)2 is defined at x = 0 but not

differentiable w.r.t x).

(v) Although we focus in this chapter on uniform elliptical distributions, notably because
they are easier to plot and visualize, considering any other elliptical family simply
amounts to changing the constant τh next to the Bures metric in (2.2). Alternatively,
increasing (or tuning) that parameter τh simply amounts to considering elliptical
distributions with increasingly heavier tails.

3 Optimizing over the Space of Elliptical Embeddings

Our goal in this chapter is to use the set of elliptical distributions endowed with the W2

distance as an embedding space. To optimize objective functions involving W2 terms, we
study in this section several parameterizations of the parameters of elliptical distributions.
Location parameters only appear in the computation of W2 through their Euclidean metric,
and offer therefore no particular challenge. Scale parameters are more tricky to handle
since they are constrained to lie in Sd+. Rather than keeping track of scale parameters,
we advocate optimizing directly on factors of such parameters, which results in simple
Euclidean (unconstrained) updates reviewed below.
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Geodesics for elliptical distributions. When A and B have full rank, the geodesic
from α to β is a curve of measures in the same family of elliptic distributions, characterized
by location and scale parameters c(t),C(t), where

c(t) = (1− t)a + tb; C(t) =
(
(1− t)I + tTAB

)
A
(
(1− t)I + tTAB

)
, (2.4)

and where the matrix TAB is such that x → TAB(x − a) + b is the so-called Monge
or Brenier optimal transportation map [1987] from α to β, given in closed form as

TAB def
= A−

1
2 (A

1
2 BA

1
2 )

1
2 A−

1
2 , (2.5)

and is the unique PSD matrix such that B = TABATAB (Lemma 1.20). When A is
degenerate, such a curve still exists as long as ImB ⊂ ImA, in which case the expression
above is still valid using pseudo-inverse square roots A†/2 in place of the usual inverse
square-root (Proposition 1.15).
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Figure 2.2: (left) Interpolation (µt)t between two measures µ0 and µ1 following the geodesic
equation (2.4). The same formula can be used to interpolate on the left and right of times
0, 1. Displayed times are [−2,−1,−.5, 0, .25, .5, .75, 1, 1.5, 2, 3]. Note that geodesicity is
not ensured outside of the boundaries [0, 1]. This is illustrated in the right plot displaying
normalized metric derivatives of the curve µt to four relevant points: µ0, µ1, µ−2, µ3. The
curve µt is not always locally geodesic, as can be seen by the fact that the metric derivative
is strictly smaller than 1 in several cases.

Differentiability in Riemannian parameterization. Scale parameters are restricted
to lie on the cone Sd+. For such problems, it is well known that a direct gradient-and-project
based optimization on scale parameters would prove too expensive. A natural remedy
to this issue is to perform manifold optimization [Absil et al., 2009]. Indeed, as in any
Riemannian manifold, the Riemannian gradient gradx

1
2d

2(x, y) is given by − logx y [Lee,
1997]. Using the expressions of the exp and log given in Proposition 1.23, we can show that
minimizing 1

2B
2(A,B) using Riemannian gradient descent with step length η corresponds

to making updates of the form

A′ =
(
(1− η)I + ηTAB

)
A
(
(1− η)I + ηTAB

)
. (2.6)

When 0 ≤ η ≤ 1, this corresponds to considering a new point A′ closer to B along the
Bures geodesic between A and B. When η is negative or larger than 1, A′ no longer lies
on this geodesic but is guaranteed to remain PSD, as can be seen from (2.6). Figure 2.2
shows a W2 geodesic between two measures µ0 and µ1, as well as its extrapolation following
exactly the formula given in (2.4). This figure illustrates that µt is not necessarily geodesic
outside of the boundaries [0, 1] w.r.t. three relevant measures, because its metric derivative
is smaller than 1 [Ambrosio et al., 2006, Theorem 1.1.2]. When negative steps are taken (for
instance when the W 2

2 distance needs to be increased), this lack of geodisicity has proved
difficult to handle numerically for a simple reason: such updates may lead to degenerate
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scale parameters A′, as illustrated around time t = 1.5 of the curve in Figure 2.2. Another
obvious drawback of Riemannian approaches is that they are not as well studied as simpler
non-constrained Euclidean problems, for which a plethora of optimization techniques are
available. This observations motivates an alternative Euclidean parameterization, detailed
in the next paragraph.

Differentiability in Euclidean parameterization. A canonical way to handle a PSD
constraint for A is to rewrite it in factor form A = LLT . In the particular case of the
Bures metric, we show that this simple parametrization comes without losing the geometric
interest of manifold optimization, while benefiting from simpler additive updates. Indeed,
one can (see Section 5) that the gradient of the squared Bures metric has the following
gradient:

∇L
1

2
B2(A,B) =

(
I−TAB

)
L, with updates L′ =

(
(1− η)I + ηTAB

)
L. (2.7)

Links between Euclidean and Riemannian parameterizations. The factor updates
in (2.7) are exactly equivalent to the Riemannian ones (2.6) in the sense that A′ = L′L′T .
Therefore, by using a factor parameterization we carry out updates that stay on the
Riemannian geodesic and yet only require linear updates on L, independently of the factor
L chosen to represent A (given a factor L of A, any right-side multiplication of that matrix
by a unitary matrix remains a factor of A).

When considering a general loss function L that takes as arguments squared Bures
distances, one can also show that L is geodesically convex w.r.t. to scale matrices A if
and only if it is convex in the usual sense with respect to L, where A = LLT . Write now
LB = TABL. One can recover that LBLTB = B. Therefore, expanding the expression B2

for the right term we obtain

B2(A,B) = B2
(
LLT ,LBLTB

)

= B2
(
LLT ,TABL

(
TABL

)T)

= ‖L−TABL‖2F (2.8)

Indeed, the Bures distance simply reduces to the Frobenius distance between two factors
of A and B. However these factors need to be carefully chosen: given L for A, the factor
for B must be computed according to an optimal transport map TAB. In fact, the Bures
distance is equal to the minimal Frobenius norm between factors of A and B [Bhatia et al.,
2018]:

B(A,B) = min
M,N∈Rd×d

MMT=A,NNT=B

‖M−N‖F .

Polarization between elliptical distributions. Some of the applications we consider,
such as the estimation of word embeddings, are inherently based on dot-products. By
analogy with the polarization identity, 〈x, y〉 = (‖x−0‖2+‖y−0‖2−‖x−y‖2)/2, we define
a Wasserstein-Bures pseudo-dot-product based on the quantum fidelity F (A,B) [Bures,
1969] (see Section 2), where δ0 = µ0d,0d×d is the Dirac mass at 0,

[µa,A : µb,B]
def
= 1

2

(
W 2

2 (µa,A, δ0) +W 2
2 (µb,B, δ0)−W 2

2 (µa,A, µb,B)
)

(2.9)

= 〈a, b〉+ Tr(A
1
2 BA

1
2 )

1
2 . (2.10)

Note that [· : ·] is not an actual inner product since the Bures metric is not Hilbertian,
unless we restrict ourselves to diagonal covariance matrices, in which case it is the the inner
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product between (a,
√

dA) and (b,
√

dB). We use [µa,A : µb,B] as a similarity measure
which has, however, some regularity: one can show that when a,b are constrained to have
equal norms and A and B equal traces, then [µa,A : µb,B] is maximal when a = b and
A = B. Differentiating all three terms in that sum, the gradient of this pseudo dot-product
w.r.t. A reduces to ∇A[µa,A : µb,B] = TAB.

3.1 Computational aspects

The computational bottleneck of gradient-based Bures optimization lies in the matrix square
roots and inverse square roots operations that arise when instantiating transport maps T
as in (2.5). A naive method using eigenvector decomposition is far too time-consuming,
and there is not yet, to the best of our knowledge, a straightforward way to perform it in
batches on a GPU. We propose to use Newton-Schulz iterations (Algorithms 1 and 2, see
[Higham, 2008, Theorem 5.2 and Ch. 6]) to directly compute Monge maps TAB and TBA.
These iterations rely exclusively on matrix-matrix multiplications, and stream efficiently
on GPUs.

Algorithm 1 NS Root Iterations
Input: PSD matrix A, ε > 0
Initialization: Y ← A

(1+ε)‖A‖ ,Z← I
while not converged do

T← (3I− ZY)/2
Y ← YT
Z← TZ

end while
Y ←

√
(1 + ε)‖A‖Y

Z← Z√
(1+ε)‖A‖

Output: Y = A1/2, Z = A−1/2

Algorithm 2 NS Monge Iterations
Input: PSD matrices A,B, ε > 0

Y ← B
(1+ε)‖B‖ ,Z← A

(1+ε)‖A‖
while not converged do

T← (3I− ZY)/2
Y ← YT
Z← TZ

end while
Y ←

√
‖B‖/‖A‖Y

Z←
√
‖A‖/‖B‖Z

Output: Y = TAB, Z = TBA

In a gradient update, both the loss and the gradient of the metric are needed. A naive
computation of B2(A,B), ∇AB2(A,B) and ∇BB

2(A,B) would require the knowledge of
6 roots:

A
1
2 ,B

1
2 , (A

1
2 BA

1
2 )

1
2 , (B

1
2 AB

1
2 )

1
2 ,A−

1
2 , and B−

1
2 ,

to compute the following transport maps:

TAB = A−
1
2 (A

1
2 BA

1
2 )

1
2 A−

1
2 , TBA = B−

1
2 (B

1
2 AB

1
2 )

1
2 B−

1
2 ,

namely four matrix roots and two matrix inverse roots, which can be computed using SVD
or Algorithm 1. However, we can avoid computing those six matrices using Algorithm 2,
i.e. Newton-Schulz iterations with a different initialization, which directly yields TAB and
TBA [Higham, 2008, §5.3]. From there, Bures distances and gradients can directly be
computed using (2.8) and (2.7).

When computing the gradients of n×m squared Wasserstein distances W 2
2 (αi, βj) in

parallel, one only needs to run Algorithm 2 n×m times (in parallel) to compute matrices
(TAiBj ,TBjAi)i≤n,j≤m. On the other hand, using an automatic differentiation framework
would require an additional backward computation of the same complexity as the forward
pass, hence requiring roughly twice as many operations per batch.

Avoiding rank deficiency at optimization time. Although B2(A,B) is defined for
rank-deficient matrices A and B, it is not differentiable with respect to these matrices
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if they are rank-deficient. Indeed, as mentioned earlier, this can be compared to the
non-differentiability of the Hellinger metric, (

√
x−√y)2 when x or y becomes 0, at which

point if becomes not differentiable. If ImB 6⊂ ImA, which is notably the case if rkB > rkA,
then ∇AB2(A,B) no longer exists. However, even in that case, ∇BB

2(A,B) exists iff
ImA ⊂ ImB. Since it would be cumbersome to account for these subtleties in a large scale
optimization setting, we propose to add a small common regularization term to all the
factor products considered for our embeddings, and set Aε = LLT + εI were ε > 0 is a
hyperparameter. This ensures that all matrices are full rank, and thus that all gradients
exist. Most importantly, all our derivations still hold with this regularization, and can be
shown to leave the method to compute the gradients w.r.t L unchanged, namely remain
equal to

(
I−TAεB

)
L.

4 Experiments

We discuss in this section several applications of elliptical embeddings. We first consider a
simple mMDS type visualization task, in which elliptical distributions in d = 2 are used
to embed isometrically points in high dimension. We argue that for such purposes, a
more natural way to visualize ellipses is to use their precision matrices. This is due to the
fact that the human eye somewhat acts in the opposite direction to the Bures metric, as
discussed in Figure 2.3. We follow with more advanced experiments in which we consider
the task of computing word embeddings on large corpora as a testing ground, and equal or
improve on the state-of-the-art.

Figure 2.3: (left) three points on the plane. (middle) isometric elliptic embedding with the
Bures metric: ellipses of a given color have the same respective distances as points on the
left. Although the mechanics of optimal transport indicate that the blue ellipsoid is far
from the two others, in agreement with the left plot, the human eye tends to focus on those
areas that overlap (below the ellipsoid center) rather than those far away areas (north-east
area) that contribute more significantly to the W2 distance. (right) the precision matrix
visualization, obtained by considering ellipses with the same axes but inverted eigenvalues,
agree better with intuition, since they emphasize that overlap and extension of the ellipse
means on the contrary that those axis contribute less to the increase of the metric.

Visualizing datasets using ellipsoids. Multidimensional scaling [De Leeuw, 1977]
aims at embedding points x1, . . . ,xn in a finite metric space in a lower dimensional one
by minimizing the stress

∑
ij(‖xi − xj‖ − ‖yi − yj‖)2. In our case, this translates to the

minimization of LMDS(a1, . . .an,A1, . . . ,An) =
∑

ij(‖xi−xj‖−W2(µai,Ai , µaj ,Aj ))
2. This

objective can be crudely minimized with a simple gradient descent approach operating on
factors as advocated in Section 3, as illustrated in a toy example carried out using data
from OECD’s PISA study2.

2http://pisadataexplorer.oecd.org/ide/idepisa/
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Figure 2.4: Toy experiment: visualization of a dataset of 10 PISA scores for 35 countries
in the OECD. (left) MDS embeddings of these countries on the plane (right) elliptical
embeddings on the plane using the precision visualization discussed in Figure 2.3. The
normalized stress with standard MDS is 0.62. The stress with elliptical embeddings is
close to 5e− 3 after 1000 gradient iterations, with random initializations for scale matrices
(following a Standard Wishart with 4 degrees of freedom) and initial means located on the
MDS solution.

Word embeddings. The skipgram model [Mikolov et al., 2013a] computes word embed-
dings in a vector space by maximizing the log-probability of observing surrounding context
words given an input central word. Vilnis and McCallum [2015] extended this approach
to diagonal Gaussian embeddings using an energy whose overall principles we adopt here,
adapted to elliptical distributions with full covariance matrices in the 2-Wasserstein space.
For every word w, we consider an input (as a word) and an ouput (as a context) represen-
tation as an elliptical measure, denoted respectively µw and νw, both parameterized by a
location vector and a scale parameter (stored in factor form). Given a set R of positive

Table 2.1: Results for elliptical embeddings (evaluated using our cosine mixture) compared
to diagonal Gaussian embeddings trained with the seomoz package (evaluated using expected
likelihood cosine similarity as recommended by Vilnis and McCallum).

Dataset W2G/45/C Ell/12/CM
SimLex 25.09 24.09
WordSim 53.45 66.02

WordSim-R 61.70 71.07
WordSim-S 48.99 60.58

MEN 65.16 65.58
MC 59.48 65.95
RG 69.77 65.58
YP 37.18 25.14

MT-287 61.72 59.53
MT-771 57.63 56.78
RW 40.14 29.04

word/context pairs of words (w, c), and for each input word a set N(w) of n negative
contexts words sampled randomly, we adapt Vilnis and McCallum’s loss function to the
W 2

2 distance to minimize the following hinge loss:

∑

(w,c)∈R


M − [µw : νc] + 1

n

∑

c′∈N(w)

[µw : νc′ ]




+

,

where M > 0 is a margin parameter. We train our embeddings on the concatenated ukWaC
and WaCkypedia corpora [Baroni et al., 2009], consisting of about 3 billion tokens, on
which we keep only the tokens appearing more than 100 times in the text (for a total
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number of 261583 different words). We train our embeddings using adagrad [Duchi et al.,
2011], sampling one negative context per positive context and, in order to prevent the norms
of the embeddings to be too highly correlated with the corresponding word frequencies (see
Figure in supplementary material), we use two distinct sets of embeddings for the input
and context words.

6 4 2 0 2 4 6

4

3

2

1

0

1
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man

Figure 2.5: Precision matrix visualization of trained embeddings of a set of words on the
plane spanned by the two principal eigenvectors of the covariance matrix of “Bach”.

We compare our full elliptical to diagonal Gaussian embeddings trained using the
methods described in [Vilnis and McCallum, 2015] on a collection of similarity datasets by
computing the Spearman rank correlation between the similarity scores provided in the
data and the scores we compute based on our embeddings. Note that these results are
obtained using context (νw) rather than input (µw) embeddings. For a fair comparison
across methods, we set dimensions by ensuring that the number of free parameters remains
the same: because of the symmetry in the covariance matrix, elliptical embeddings in
dimension d have d + d(d + 1)/2 free parameters (d for the means, d(d + 1)/2 for the
covariance matrices), as compared with 2d for diagonal Gaussians. For elliptical embeddings,
we use the common practice of using some form of normalized quantity (a cosine) rather
than the direct dot product. We implement this here by computing the mean of two cosine
terms, each corresponding separately to mean and covariance contributions:

SB[µa,A, µb,B]
def
=
〈a, b〉
‖a‖‖b‖ +

Tr(A
1
2 BA

1
2 )

1
2√

TrATrB
.

Using this similarity measure rather than the Wasserstein-Bures dot product is motivated
by the fact that the norms of the embeddings show some dependency with word frequencies
(see figures in supplementary) and become dominant when comparing words with different
frequencies scales. An alternative could have been obtained by normalizing the Wasserstein-
Bures dot product in a more standard way that pools together means and covariances.
However, as discussed in the supplementary material, this choice makes it harder to deal
with the variations in scale of the means and covariances, therefore decreasing performance.
We also evaluate our embeddings on the Entailment dataset ([Baroni et al., 2012]), on
which we obtain results roughly comparable to those of [Vilnis and McCallum, 2015]. Note
that contrary to the similarity experiments, in this framework using the (unsymmetrical)
KL divergence makes sense and possibly gives an advantage, as it is possible to choose the
order of the arguments in the KL divergence between the entailing and entailed words.

Hypernymy. In this experiment, we use the framework of [Nickel and Kiela, 2017] on
hypernymy relationships to test our embeddings. A word A is said to be a hypernym of
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Table 2.2: Entailment benchmark: we evaluate our embeddings on the Entailment dataset
using average precision (AP) and F1 scores. The threshold for F1 is chosen to be the best
at test time.

Model AP F1
W2G/45/Cosine 0.70 0.74
W2G/45/KL 0.72 0.74
Ell/12/CM 0.70 0.73

a word B if any B is a type of A, e.g. any dog is a type of mammal, thus constituting
a tree-like structure on nouns. The WORDNET dataset [Miller, 1995] features a transitive
closure of 743,241 hypernymy relations on 82,115 distinct nouns, which we consider as an
undirected graph of relations R. Similarly to the skipgram model, for each noun u we
sample a fixed number n of negative examples and store them in set N (u) to optimize the
following loss:

∑

(u,v)∈R

log
e[µu,µv ]

e[µu,µv ] +
∑

v′∈N (u) e
[µu,µv′ ]

.

We train the model using SGD with only one set of embeddings. The embeddings are then
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Figure 2.6: Reconstruction performance of our embeddings against Poincare embeddings
(reported from [Nickel and Kiela, 2017], as we were not able to reproduce scores comparable
to these values) evaluated by mean retrieved rank (lower=better) and MAP (higher=better).

evaluated on a link reconstruction task: we embed the full tree and rank the similarity of
each positive hypernym pair (u, v) among all negative pairs (u, v′) and compute the mean
rank thus achieved as well as the mean average precision (MAP), using the Wasserstein-
Bures dot product as the similarity measure. Elliptical embeddings consistently outperform
Poincare embeddings for dimensions above a small threshold, as shown in Figure 2.6, which
confirms our intuition that the addition of a notion of variance or uncertainty to point
embeddings allows for a richer and more significant representation of words.

4.1 Model Hyperparameters and Training Details

Word Embeddings. We train our embeddings on the concatenated ukWaC and WaCk-
ypedia corpora [Baroni et al., 2009], consisting of about 3 billion tokens, on which we keep
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only the tokens appearing more than 100 times in the text after lowercasing and removal of
all punctuation (for a total number of 261583 different words). We optimize 5 epoches using
adagrad [Duchi et al., 2011] with ε = 10−8 with a learning rate of 0.01. We use a window
size of 10 (i.e. positive examples consist of the first 5 preceding and first 5 succeeding
words), set the margin to 10, sample one negative context per positive context and, in order
to prevent the norms of the embeddings to be too highly correlated with the corresponding
word frequencies (see Figure 2.7), we use two distinct sets of embeddings for the input and
context words. In order to use as much parallelization as possible, we use batches of size
10000, but believe that smaller batches would lead to improved performances. We limit
matrix square root approximations to 6 Newton-Schulz iterations and add 0.01Id to the
covariances to ensure non-singularity.

To generate batches, we use the same sampling tricks as in [Mikolov et al., 2013b],
namely subsampling the frequent terms (using a threshold of 10−5 as recommended for
large datasets) and smoothing the negative distribution by using probabilities {f3/4

i /Z}
where fi is the frequency of word i for sampling negative contexts {c′i}.

We then evaluate our embeddings on the following datasets:

• Simlex [Hill et al., 2015],

• WordSim [Finkelstein et al., 2002],

• MEN [Bruni et al., 2014],

• MC [Miller and Charles, 1991],

• RG [Rubenstein and Goodenough, 1965],

• YP [Yang and Powers, 2005],

• MTurk [Radinsky et al., 2011, Halawi et al., 2012],

• RW [thang Luong et al., 2013],

using the context embeddings and the Wasserstein-Bures cosine as a similarity measure.

Hypernymy. We train our embeddings on the transitive closure of the WORDNET
dataset [Miller, 1995] which features 743,241 hypernymy relations on 82,115 distinct nouns.
For disambiguation, note that if (u, v) is a hypernymy relation with u 6= v, (v, u) is in
general not a positive relation, but (u, u) is as a noun is always its own hypernym.

We perform our optimization using SGD with batches of 1000 relations, a learning rate
0.02 for dimensions 3 and 4 and 0.01 for higher dimensions, sample 50 negative examples per
positive relation, use 6 square root iterations and add 0.01Id to the covariances. Contrary to
the skipgram experiment, we use a single set of embeddings and use the Wasserstein-Bures
dot product as a similarity measure.

4.2 The Wasserstein-Bures cosine

As discussed in Section 4, a natural choice of similarity measure would be the Wasserstein-
Bures cosine, obtained by normalizing the Wasserstein-Bures dot product with the means’
norms and covariances’ root traces jointly:

cosB[µa,A, µb,B]
def
=

〈a, b〉+ Tr[A
1
2 BA

1
2 ]

1
2

(‖a‖2 + TrA)
1
2 (‖b‖2 + TrB)

1
2

.
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(inputs) (contexts)

Figure 2.7: log-log plot of the norms (top) and traces (bottom) of the embeddings’ means
vs. word frequency: the sizes of the input embeddings (left) follow a power law, whereas
context embeddings (right) give less importance to very frequent words and emphasize on
medium frequency words.

However, we have found that in some applications (and notably in our skipgram
experiments) such a joint normalization can result in either the means or the covariances to
have a negligible contribution if the scales of the parameters differ too much. To circumvent
this problem, we introduce another similarity measure, which is a mixture of two cosine
terms:

SB[µa,A, µb,B] :=
〈a, b〉
‖a‖‖b‖ +

Tr[A
1
2 BA

1
2 ]

1
2√

TrATrB
.

This latter similarity measure allows to gather information from the means and the
covariances independently. Note that while the term corresponding to the covariances is
obtained in a cosine-like normalization, it takes values between 0 and 1 as it only involve
traces of PSD matrices, whereas the means term is a regular Euclidean cosine and therefore
takes values between -1 and 1. We compare the behaviors of these two measures on the
word similarity evaluation task by introducing a mixing coefficient ρ, and defining
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(b) cosB

Figure 2.8: Pearson rank correlation scores on similarity benchmarks as a function of the
mixing coefficient: SB smoothly attains a maximum in performance around ρ = 1, whereas
cosB has a less regular behavior.

cosB[µa,A, µb,B; ρ]
def
=

〈a, b〉+ ρTr[A
1
2 BA

1
2 ]

1
2

(‖a‖2 + ρTrA)
1
2 (‖b‖2 + ρTrB)

1
2

SB[µa,A, µb,B; ρ]
def
=
〈a, b〉
‖a‖‖b‖ + ρ

Tr[A
1
2 BA

1
2 ]

1
2√

TrATrB
.

As can be seen from Figure 2.8, the Wasserstein-Bures cosine is less well behaved and
makes it difficult to find an optimal mixing value. On the other hand, the mixture of cosines
similarity measure varies more smoothly and seems to reach a performance maximum
around ρ = 1, and achieves better performance than the Wasserstein-Bures cosine on most
datasets.

Conclusion

We have proposed to use the space of elliptical distributions endowed with the W2 metric
to embed complex objects. This latest iteration of probabilistic embeddings, in which a
point an object is represented as a probability measure, can consider elliptical measures
(including Gaussians) with arbitrary covariance matrices. Using the W2 metric we can
provides a natural and seamless generalization of point embeddings in Rd. Each embedding
is described with a location c and a scale C parameter, the latter being represented in
practice using a factor matrix L, where C is recovered as LLT . The visualization part of
work is still subject to open questions. One may seek a different method than that proposed
here using precision matrices, and ask whether one can include more advanced constraints
on these embeddings, such as inclusions or the presence (or absence) of intersections across
ellipses. Handling multimodality using mixtures of Gaussians could be pursued. In that
case a natural upper bound on the W2 distance can be computed by solving the OT
problem between these mixtures of Gaussians using a simpler proxy: consider them as
discrete measures putting Dirac masses in the space of Gaussians endowed with the W2
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metric as a ground cost, and use the optimal cost of that proxy as an upper bound of
their Wasserstein distance. Finally, note that the set of elliptical measures µc,C endowed
with the Bures metric can also be interpreted, given that C = LLT ,L ∈ Rd×k, and writing
l̃i = li− l̄ for the centered column vectors of L, as a discrete point cloud (c+ 1√

k
l̃i)i endowed

with a W2 metric only looking at their first and second order moments. These k points,
whose mean and covariance matrix match c and C, can therefore fully characterize the
geometric properties of the distribution µc,C, and may provide a simple form of multimodal
embedding.
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5 Appendix: Derivation of the Euclidean Gradient of the
Bures metric

Let ⊗ denote the Kronecker product of matrices. Recall [see Fackler, 2005] that

[B> ⊗A]vec(X) = vec(AXB) and [A⊗B][C⊗D] = [AC⊗BD].

In the following, we will often omit the vec(·) and treat matrices as vectors when the
context makes it clear. We will make use of the following identities:

∂X f ◦ g(X) = ∂Xf(g(X))∂Xg(X)

∂X (fg)(X) = [g(X)> ⊗ Id]∂Xf(X) + [Id ⊗ g(X)]∂Xg(X).

Likewise, we will write the solution LA(B) of the Lyapunov equation XA + AX = B using
Kronecker notations:

∂XX
1/2[H] = LX1/2(H)

= [X1/2 ⊗ Id + Id ⊗X1/2]−1H.

Gradient of B2(A,B). Let F (A,B) = Tr(B
1
2 AB

1
2 )

1
2 denote the fidelity, let us differ-

entiate F w.r.t A for the Frobenius inner product:

∇AF (A,B) =

[
∂A(B

1
2 AB

1
2 )

1
2

]>
Id

=

[[
B

1
2 AB

1
2 )

1
2 ⊗ Id + Id ⊗ (B

1
2 AB

1
2 )

1
2

]−1

∂A(B
1
2 AB

1
2 )

]>
Id

=

[
B

1
2 ⊗B

1
2

] [
(B

1
2 AB

1
2 )

1
2 ⊗ Id + Id ⊗ (B

1
2 AB

1
2 )

1
2

]−1

Id

=

[
B

1
2 ⊗B

1
2

]
1

2
(B

1
2 AB

1
2 )−

1
2

=
1

2
B

1
2 (B

1
2 AB

1
2 )−

1
2 B

1
2

=
1

2
TAB,

where the fourth line comes from the fact that ∀A ∈ Sd++,LA(Id) = 1
2A−1/2.

Gradient of B2(LLT ,B). Let now A = LL>, let us differentiate w.r.t L :

∇Lf(LL>,B) =

[
∂L(B

1
2 AB

1
2 )

1
2

]>
Id

= ∂LA>
[
∂A(B

1
2 AB

1
2 )

1
2

]>
Id

=
[
L> ⊗ Id

]
[Id + Tn,n]

1

2
B

1
2 (B

1
2 AB

1
2 )−

1
2 B

1
2

= B
1
2 (B

1
2 AB

1
2 )−

1
2 B

1
2 L

= TABL,

where Tn,n is the transposition tensor, such that ∀X ∈ Rn×n,Tn,nvec(X) = vec(X>).
Finally, using the same calculations and the fact that ∂L

[
LL> + εId

]
= ∂L

[
LL>

]
, one

can see that if A = LL> + εId, then we still have

∇LF (LL> + εId,B) = TABL.





Chapter 3

Building Optimal Transport Plans on
Subspace Projections

Computing optimal transport (OT) between measures in high dimensions is doomed
by the curse of dimensionality. A popular approach to avoid this curse is to project
input measures on lower-dimensional subspaces (1D lines in the case of sliced Wasserstein
distances), solve the OT problem between these reduced measures, and settle for the
Wasserstein distance between these reductions, rather than that between the original
measures. This approach is however difficult to extend to the case in which one wants to
compute an OT map (a Monge map) between the original measures. Since computations
are carried out on lower-dimensional projections, classical map estimation techniques can
only produce maps operating in these reduced dimensions. We propose in this work two
methods to extrapolate, from an transport map that is optimal on a subspace, one that is
nearly optimal in the entire space. We prove that the best optimal transport plan that
takes such “subspace detours” is a generalization of the Knothe-Rosenblatt transport. We
show that these plans can be explicitly formulated when comparing Gaussian measures
(between which the Wasserstein distance is commonly referred to as the Bures or Fréchet
distance). We provide an algorithm to select optimal subspaces given pairs of Gaussian
measures, and study scenarios in which that mediating subspace can be selected using
prior information. We consider applications to semantic mediation between elliptical word
embeddings and domain adaptation with Gaussian mixture models.

This chapter is based on [Muzellec and Cuturi, 2019].

65
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1 Introduction

Minimizing the transport cost between two probability distributions [Villani, 2008] results
in two useful quantities: the minimum cost itself, often cast as a loss or a metric (the
Wasserstein distance), and the minimizing solution, a function known as the Monge
map [Monge, 1781] that pushes forward the first measure onto the second with least expected
cost. While the former has long attracted the attention of the machine learning community,
the latter is playing an increasingly important role in data sciences. Indeed, important
problems such as domain adaptation [Courty et al., 2014], generative modelling [Goodfellow
et al., 2014, Arjovsky et al., 2017, Genevay et al., 2018], reconstruction of cell trajectories in
biology Schiebinger et al. [2019] and auto-encoders [Kingma and Welling, 2014, Tolstikhin
et al., 2018] among others can be recast as the problem of finding a map, preferably optimal,
which transforms a reference distribution into another. However, accurately estimating
an OT map from data samples is a difficult problem, plagued by the well documented
instability of OT in high-dimensional spaces [Dudley, 1969, Fournier and Guillin, 2015]
and its high computational cost.

Optimal transport on subspaces. Several approaches, both in theory and in practice,
aim at bridging this gap. Theory [Weed and Bach, 2017] supports the idea that sample
complexity can be improved when the measures are supported on lower-dimensional
manifolds of high-dimensional spaces. Practical insights [Cuturi, 2013] supported by
theory [Genevay et al., 2019] advocate using regularizations to improve both computational
and sample complexity. Some regularity in OT maps can also be encoded by looking
at specific families of maps [Seguy et al., 2018, Paty et al., 2020]. Another trend relies
on lower-dimensional projections of measures before computing OT. In particular, sliced
Wasserstein (SW) distances [Bonneel et al., 2015] leverage the simplicity of OT between
1D measures to define distances and barycentres, by averaging the optimal transport
between projections onto several random directions. This approach has been applied to
alleviate training complexity in the GAN/VAE literature [Deshpande et al., 2018, Wu
et al., 2019] and was generalized very recently in [Paty and Cuturi, 2019] who considered
projections on k-dimensional subspaces that are adversarially selected. However, these
subspace approaches only carry out half of the goal of OT: by design, they do result in more
robust measures of OT costs, but they can only provide maps in subspaces that are optimal
(or nearly so) between the projected measures, not transportation maps in the original,
high-dimensional space in which the original measures live. For instance, the closest thing
to a map one can obtain from using several SW univariate projections is an average of
several permutations, which is not a map but a transport plan or coupling [Rowland et al.,
2019][Rabin et al., 2011, p.6].

Our approach. Whereas the approaches cited above focus on OT maps and plans in
projection subspaces only, we consider here plans and maps on the original space that
are constrained to be optimal when projected on a given subspace E. This results in the
definition of a class of transportation plans that figuratively need to make an optimal “detour”
in E. We propose two constructions to recover such maps corresponding respectively (i) to
the independent product between conditioned measures, and (ii) to the optimal conditioned
map.

Chapter structure. After recalling background material on OT in Section 2, we intro-
duce in Section 3 the class of subspace-optimal plans that satisfy projection constraints
on a given subspace E. We characterize the degrees of freedom of E-optimal plans using
their disintegrations on E and introduce two extremal instances: Monge-Independent plans,
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which assume independence of the conditionals, and Monge-Knothe maps, in which the
conditionals are optimally coupled. We give closed forms for the transport between Gaussian
distributions in Section 4, respectively as a degenerate Gaussian distribution, and a linear
map with block-triangular matrix representation. We provide guidelines and a minimizing
algorithm for selecting a subspace E when it is not prescribed a priori in Section 5. Finally,
in section 6 we showcase the behavior of MK and MI transports on (noisy) synthetic data,
show how using a mediating subspace can be applied to selecting meanings for polysemous
elliptical word embeddings, and experiment using MK maps with the minimizing algorithm
on a domain adaptation task with Gaussian mixture models.

Notations. For E a linear subspace of Rd, E⊥ is its orthogonal complement, VE ∈ Rd×k
(resp. VE⊥ ∈ Rd×d−k) the matrix of orthonormal basis vectors of E (resp E⊥). pE : x→
V>Ex is the orthogonal projection operator onto E. P2(Rd) is the space of probability
distributions over Rd with finite second moments. B(Rd) is the Borel algebra over Rd. ⇀
denotes the weak convergence of measures. ⊗ is the product of measures, and is used in
measure disintegration by abuse of notation.

2 Reminders on Optimal Transport Plans, Maps and
Disintegration of Measure

Let us start by recalling basic facts on Monge-Kantorovich optimal transport.

Kantorovich plans. For two probability measures µ, ν ∈ P2(Rd), we refer to the set of
couplings

Π(µ, ν)
def
= {γ ∈ P(Rd × Rd) : ∀A,B ∈ B(Rd), γ(A× Rd) = µ(A), γ(Rd ×B) = ν(B)}

as the set of transportation plans between µ, ν. The 2-Wasserstein distance between µ and
ν is defined as

W 2
2 (µ, ν)

def
= min

γ∈Π(µ,ν)
E(X,Y )∼γ

[
‖X − Y ‖2

]
.

Conveniently, transportation problems with quadratic cost can be reduced to transportation
between centered measures. Indeed, let mµ (resp. mν) denote first moment of µ (resp. ν).
Then,

∀γ ∈ Π(µ, ν),E(X,Y )∼γ [‖X − Y ‖2] = ‖mµ −mν‖2 + E(X,Y )∼γ [‖(X −mµ)− (Y −mν)‖2].

Therefore, in the following all probability measures are assumed to be centered, unless
stated otherwise.

Monge maps. For a Borel-measurable map T , the push-forward of µ by T is defined
as the measure T]µ satisfying for all A ∈ B(Rd), T]µ(A) = µ(T−1(A)). A map such that
T]µ = ν is called a transportation map from µ to ν. When an optimal transportation map
exists, the Wasserstein distance can be written in the form of the Monge problem

W 2
2 (µ, ν) = min

T :T]µ=ν
EX∼µ[‖X − T (X)‖2]. (3.1)

When it exists, the optimal transportation map T ? in the Monge problem is called the
Monge map from µ to ν. It is then related to the optimal transportation plan γ? by the
relation γ? = (Id, T

?)]µ. When µ and ν are absolutely continuous (a.c.), a Monge map
always exists [Santambrogio, 2015, Theorem 1.22].
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Global maps or plans that are locally optimal. Considering the projection operator
on E, pE , we write µE = (pE)]µ for the marginal distribution of µ on E. Suppose that we
are given a Monge map S between the two projected measures µE and νE . One of the
contributions of this chapter is to propose extensions of this map S as a transportation
plan γ (resp. a new map T ) whose projection γE = (pE , pE)]γ on that subspace E coincides
with the optimal transportation plan (IdE , S)]µE (resp. pE ◦ T = S ◦ pE). Formally, the
transports introduced in Section 3 only require that S be a transport map from µE to νE ,
but optimality is required in the closed forms given in section 4 for Gaussian distributions. In
either case, this constraint implies that γ is built “assuming that” it is equal to (IdE , S)]µE
on E. This is rigorously defined using the notion of measure disintegration.

Disintegration of measures. The disintegration of µ on a subspace E is the collection
of measures (µxE )xE∈E supported on the fibers {xE} × E⊥ such that any test function φ
can be integrated against µ as

∫
Rd φdµ =

∫
E

(∫
E⊥ φ(y)dµxE (y)

)
dµE(xE). In particular, if

X ∼ µ, then the law of X given xE is µxE . By abuse of the measure product notation
⊗, measure disintegration is denoted as µ = µxE ⊗ µE . A more general description of
disintegration can be found in [Ambrosio et al., 2006, Ch. 5.5].

3 Lifting Transport from Subspaces to the Full Space

Given two distributions µ, ν ∈ P2(Rd), it is often easier to compute a Monge map S between
their marginals µE , νE on a k-dimensional subspace E rather than in the whole space Rd.
When k = 1, this fact is at the heart of sliced wasserstein approaches [Bonneel et al., 2015],
which have recently sparked interest in the GAN/VAE literature [Deshpande et al., 2018,
Wu et al., 2019]. However, when k < d, there is in general no straightforward way of
extending S to a transportation map or plan between µ and ν. In this section, we prove
the existence of such extensions and characterize them.

Subspace-optimal plans. A transportation plan between µE and νE is a coupling living
in P(E ×E). In general, it cannot be cast directly as a transportation plan between µ and
ν taking values in P(Rd × Rd). However, the existence of such a “lifted” plan is given by
the following result, which is used in OT theory to prove that Wp is a metric:

Lemma 3.1 (The Gluing Lemma, Villani [2008]). Let µ1, µ2, µ3 ∈ P(Rd). If γ12 is a
coupling of (µ1, µ2) and γ23 is a coupling of (µ2, µ3), then one can construct a triple of
random variables (Z1, Z2, Z3) such that (Z1, Z2) ∼ γ12 and (Z2, Z3) ∼ γ23.

By extension of the lemma, if we define (i) a coupling between µ and µE , (ii) a coupling
between ν and νE , and (iii) the optimal coupling between µE and νE , (Id, S)]µE (where S
stands for the Monge map from µE to νE), we get the existence of four random variables
(with laws µ, µE , ν and νE) which follow the desired joint laws. However, the lemma does
not imply the uniqueness of those random variables, nor does it give a closed form for the
corresponding coupling between µ and ν.

Definition 3.2 (Subspace-Optimal Plans). Let µ, ν ∈ P2(Rd) and E be a k-dimensional
subspace of Rd. Let S be a Monge map from µE to νE. We define the set of E-optimal
plans between µ and ν as ΠE(µ, ν)

def
= {γ ∈ Π(µ, ν) : γE = (IdE , S)]µE}.

Degrees of freedom in ΠE(µ, ν). When k < d, there can be infinitely many E-optimal
plans. However, we can further characterize the degrees of freedom available to define
plans in ΠE(µ, ν). Indeed, let γ ∈ ΠE(µ, ν). Then, disintegrating γ on E × E, we get
γ = γ(xE ,yE) ⊗ γE , i.e. plans in ΠE(µ, ν) only differ on their disintegrations on E × E.
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x

xE S(xE)

{xE} × E {S(xE)} × E

E

E

E

S(xE)

Figure 3.1: A d = 2, k = 1 illustration. Any γ ∈ ΠE(µ, ν) being supported on G(S)× (E⊥)2,
all the mass from x is transported on the fiber {S(xE)} × E⊥. Different γ’s in ΠE(µ, ν)
correspond to different couplings between the fibers {xE} × E⊥ and {S(xE)} × E⊥.

Further, since γE stems from a transport (Monge) map S, it is supported on the graph
of S on E, G(S) = {(xE , S(xE)) : xE ∈ E} ⊂ E × E. This implies that γ puts zero mass
when yE 6= S(xE) and thus that γ is fully characterized by γ(xE ,S(xE)), xE ∈ E, i.e. by
the couplings between µxE and νS(xE) for xE ∈ E. This is illustrated in Figure 3.1. Two
such couplings are presented: the first, Monge-Independent (MI) transport (Definition
3.3) corresponds to independent couplings between the conditionals, while the second
Monge-Knothe (MK) transport (Definition 3.4) corresponds to optimal couplings between
the conditionals.

Definition 3.3 (Monge-Independent Plans). The Monge-Independent plan disintegrates
as the product of the independent couplings between µxE and νS(xE) for xE ∈ E, and the
coupling corresponding to S on E:

πMI def
= (µxE ⊗ νS(xE))⊗ (IdE , S)]µE .

Monge-Independent transport only requires that there exists a Monge map S between
µE and νE (and not on the whole space), but extends S as a transportation plan and not a
map. Since it couples disintegrations with the independent law, it is particularly suited to
settings where all the information is contained in E, as shown in section 6.

When there exists a Monge map between disintegrations µxE to νS(xE) for all xE ∈ E
(e.g. when µ and ν are a.c.), it is possible to extend S as a transportation map between µ
and ν using those maps. The Monge-Knothe transport corresponds to the E-optimal plan
with optimal couplings between the disintegrations.

Definition 3.4 (Monge-Knothe Transport). For all xE ∈ E, let T̂ (xE ; ·) : E⊥ → E⊥

denote the Monge map from µxE to νS(xE). The Monge-Knothe transportation map is
defined as

TMK :E ⊕ E⊥ → E ⊕ E⊥

(xE , xE⊥) 7→ (S(xE), T̂ (xE ;xE⊥)).
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The proof that TMK defines a transport map from µ to ν is a direct adaptation of the
proof for the Knothe-Rosenblatt transport [Santambrogio, 2015, Section 2.3]. When it is
not possible to define a Monge map between the disintegrations, one can still consider
the optimal couplings πOT(µxE , νS(xE)) and define πMK = πOT(µxE , νS(xE))⊗ (IdE , S)]µE ,
which we still call Monge-Knothe plan by abuse. In either case, πMK is the E-optimal plan
with lowest global cost:

Proposition 3.5. The Monge-Knothe plan is optimal in ΠE(µ, ν), namely

πMK ∈ arg min
γ∈ΠE(µ,ν)

E(X,Y )∼γ [‖X − Y ‖2].

Proof. E-optimal plans only differ in the couplings they induce between µxE and νS(xE) for
xE ∈ E. Since πMK corresponds to the case when these couplings are optimal, disintegrating
γ over E × E in

∫
Rd×Rd

‖x− y‖2dγ(x, y) shows that γ = πMK has the lowest cost.

Relation with the Knothe-Rosenblatt (KR) transport. These definitions are re-
lated to the KR transport [Santambrogio, 2015, section 2.3], which consists in defining a
transport map between two a.c. measures by recursively (i) computing the Monge map T1

between the first two one-dimensional marginals of µ and ν and (ii) repeating the process
between the disintegrated measures µx1 and νT1(x1). MI and MK marginalize on the k ≥ 1
dimensional subspace E, and respectively define the transport between disintegrations µxE
and νS(xE) as the product measure and the optimal transport instead of recursing.

MK as a limit of optimal transport with re-weighted quadratic costs. Similarly
to KR [Carlier et al., 2009], MK transport maps can intuitively be obtained as the limit of
optimal transport maps, when the costs on E⊥ become negligible compared to the costs on
E.

Proposition 3.6. Let Rd = E ⊕ E⊥,
(
VE VE⊥

)
an orthonormal basis of E ⊕ E⊥ and

µ, ν ∈ P2(Rd) be two a.c. probability measures. Define

∀ε > 0, Pε
def
= VEV>E + εVE⊥V>E⊥ and d2

Pε(x, y)
def
= (x− y)>Pε(x− y). (3.2)

Let Tε be the optimal transport map for the cost d2
Pε

. Then Tε → TMK in L2(µ).

Proof. The proof is a simpler, two-step variation of that of [Carlier et al., 2009], which we
refer to for additional details. For all ε ≥ 0, let πε be the optimal plan for d2

Pε
, and suppose

there exists π such that πε ⇀ π (which is possible up to subsequences). By definition of πε,
we have that

∀ε ≥ 0,

∫
d2
Pεdπε ≤

∫
d2
Pεdπ

MK.

Since d2
Pε

converges locally uniformly to d2
VE

def
= (x, y)→ (x− y)>VEV>E(x− y), we get

∫
d2
VE

dπ ≤
∫
d2
VE

dπMK. But by definition of πMK, πMK
E

def
= (pE , pE)]π

MK is the optimal
transport plan on E, therefore the last inequality implies that both marginals on E coincide,
i.e. πE = πMK

E .
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Next, notice that the πε’s all have the same marginals µE , νE on E and hence cannot
perform better on E than πMK. Therefore,

∫

E×E

d2
VE

dπMK + ε

∫
d2
V
E⊥

dπε ≤
∫
d2
Pεdπε

≤
∫
d2
Pεdπ

MK

=

∫

E×E

d2
VE

d(πMK)E + ε

∫
d2
V
E⊥

dπMK.

Hence, passing to the ε→ 0 limit, we have
∫
d2
V
E⊥

dπ ≤
∫
d2
V
E⊥

dπMK.

Let us now disintegrate this inequality on E × E (using the equality πE = (πMK)E):
∫ (∫

E⊥×E⊥

d2
V
E⊥

dπ(xE ,yE)

)
dπMK

E (xE , yE) ≤
∫ (∫

E⊥×E⊥

d2
V
E⊥

dπMK
(xE ,yE)

)
dπMK

E (xE , yE).

Again, by definition, for (xE , yE) in the support of πMK
E , πMK

(xE ,yE) is the optimal transporta-
tion plan between µxE and νyE , and the previous inequality implies π(xE ,yE) = πMK

(xE ,yE) for
πMK
E -a.e. (xE , yE), and finally π = πMK. Finally, by the a.c. hypothesis, all transport plans
πε come from transport maps Tε, which implies Tε → TMK in L2(µ).

MI as a limit of the discrete case. When µ and ν are a.c., for n ∈ N let µn, νn denote
the uniform distribution over n i.i.d. samples from µ and ν respectively, and let πn be an
optimal transportation plan between (pE)]µn and (pE)]νn given by a Monge map (which is
possible assuming uniform weights and non-overlapping projections). We have that µn ⇀ µ
and νn ⇀ µ. From [Santambrogio, 2015, Th 1.50, 1.51], we have that πn ∈ P2(E × E)
converges weakly, up to subsequences, to a coupling π ∈ P2(E × E) that is optimal for
µE and νE . On the other hand, up to points having the same projections, the discrete
plans πn can also be seen as plans in P(Rd × Rd). A natural question is then whether the
sequence πn ∈ P(Rd × Rd) has a limit in P(Rd × Rd).

Proposition 3.7. Let µ, ν ∈ P2(Rd) be a.c. and compactly supported, µn, νn, n ≥ 0 be
uniform distributions over n i.i.d. samples, and πn ∈ ΠE(µn, νn), n ≥ 0. Then πn ⇀
πMI(µ, ν).

Proof. Let X ⊂ Rd be a compact set, and consider two a.c. probabilty measures µ and ν
supported on X. Let E be a k-dimensional subspace which we identify w.l.o.g. with Rk and
πMI ∈ P(Rd × Rd) as in Definition 3.3. For n ∈ N, denote n-sample empirical measures of
µ and ν by µn = 1

n

∑n
i=1 δxi and νn = 1

n

∑n
i=1 δyi where the xi (resp. yi) are i.i.d. samples

from µ (resp. ν). Let Sn : Rk → Rk be the Monge map from the projection on E (pE)]µn

of µn to that of νn, and πn
def
= (Id, Sn)][(pE)]µn].

Since µ and ν are supposed absolutely continuous, almost surely no two points have
the same projection on E. Hence, tn can be extended to a transport between µn and νn,
whose transport plan we will denote γn.

Let f ∈ Cb(X×X). Since X is compact, by density (given by the Stone-Weierstrass
theorem) it is sufficient to consider functions of the form

f(x1, ..., xd; y1, ..., yd) = g(x1, ..., xk; y1, ..., yk)h(xk+1, ..., xd; yk+1, ..., yd).
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We will use this along with the disintegrations of γn on E ×E (denoted (γn)x1:k,y1:k for
(x1:k, y1:k) ∈ E × E) to prove convergence:

∫

X×X

fdγn =

∫

X×X

g(x1:k, y1:k)h(xk+1:d, yk+1:d)dγn

=

∫

E×E

g(x1:k, y1:k)dπn

∫
h(xk+1:d, yk+1:d)d(γn)x1:k,y1:k

=

∫

E×E

g(x1:k, y1:k)dπn

∫
h(xk+1:d, yk+1:d)d(µn)x1:kd(νn)tn(x1:k).

Then, we use (i) the Arzela-Ascoli theorem to get uniform convergence of tn to TE to
get d(νn)tn(x1:k) ⇀ d(ν)TE(x1:k) and (ii) the convergence πn ⇀ πMI

E
def
= (pE , pE)]π

MI to get
∫

E×E

g(x1:k, y1:k)dπn

∫
h(xk+1:d, yk+1:d)d(µn)x1:kd(νn)tn(x1:k)

→
∫

E×E

g(x1:k, y1:k)dπ
MI
E

∫
h(xk+1:d, yk+1:d)dµx1:kdνTE(x1:k)

=

∫

X×X

fdπMI,

which concludes the proof in the compact case.

We conjecture that under additional assumptions, the compactness hypothesis can be
relaxed. In particular, we empirically observe convergence for Gaussians.

4 Explicit Formulas for Subspace Detours in the Bures
Metric

Multivariate Gaussian measures are a specific case of continuous distributions for which
Wasserstein distances and Monge maps are available in closed form. We first recall basic
facts from Section 2 about optimal transport between Gaussian measures, and then show
that the E-optimal transports MI and MK introduced in section Section 3 are also in closed
form. For two Gaussians µ, ν, one has

W 2
2 (µ, ν) = ‖mµ −mν‖2 + B2(varµ, var ν)

where B2 is the Bures metric [Bhatia et al., 2018] between PSD matrices:

B2(A,B)
def
= TrA + TrB− 2Tr(A1/2BA1/2)1/2.

The Monge map from a centered Gaussian distribution µ with covariance matrix A to one
ν with covariance matrix B is linear and is represented by the matrix

TAB def
= A−1/2(A1/2BA1/2)1/2A−1/2.

For any linear transport map, T]µ has covariance TAT>, and the transportation cost from
µ to ν is

EX∼µ[‖X −TX‖2] = TrA + TrB− Tr(TA + AT>).

In the following, µ (resp. ν) will denote the centered Gaussian distribution with covariance

matrix A (resp. B). We write A =
(

AE A
EE⊥

A>
EE⊥

A
E⊥

)
when A is represented in an orthonormal

basis
(
VE VE⊥

)
w.r.t. E ⊕ E⊥.
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Figure 3.2: MI transport from a 2D Gaussian (red) to a 1D Gaussian (blue), projected
on the x-axis. The two 1D distributions represent the projections of both Gaussians on
the x-axis, the blue one being already originally supported on the x-axis. The oblique
hyperplane is the support of πMI, onto which its density is represented.

Monge-Independent transport between Gaussian measures. The MI transport
between Gaussian measures is given by a degenerate Gaussian, i.e. a measure with Gaussian
density over the image of its covariance matrix Σ.

Proposition 3.8 (Monge-Independent (MI) transport for Gaussian measures).

Let C
def
=
(
VEAE + VE⊥A>EE⊥

)
TAEBE

(
VE> + (BE)−1BEE⊥V>E⊥

)
(3.3)

and Σ
def
=
(

A C
C> B

)
. Then πMI(µ, ν) = N (02d,Σ) ∈ P(Rd × Rd).

Due to its being lengthy and merely technical, the proof of Proposition 3.8 is deferred
to Section 7.

Knothe-Rosenblatt and Monge-Knothe transport between Gaussian measures.
Before giving the closed-form MK map for Gaussian measures, we derive the KR map
[Santambrogio, 2015, §2.3] with successive marginalization1 on x1, x2, ..., xd. When d = 2
and the basis is orthonormal for E ⊕ E⊥, those two notions coincide.

Proposition 3.9 (Knothe-Rosenblatt (KR) transport between Gaussian measures). Let
LA (resp. LB) be the Cholesky factor of A (resp. B). The KR transport from µ to ν is a
linear map whose matrix is given by TAB

KR = LB(LA)−1. Its cost is the squared Frobenius
distance between the Cholesky factors LA and LB:

EX∼µ[‖X − TAB
KR X‖2] = ‖LA − LB‖2.

Proof. The KR transport with successive marginalization on x1, x2, ..., xd between two a.c.
distributions has a lower triangular Jacobian with positive entries on the diagonal. Further,
since the one-dimensional disintegrations of Gaussian measures are Gaussian measures
themselves, and since Monge maps between Gaussian measures are linear, the KR transport

1Note that compared to Santambrogio [2015], this is the reversed marginalization order, which is why
the KR map here has lower triangular Jacobian.
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between two centered Gaussians is a linear map, hence its matrix representation equals its
Jacobian and is lower triangular.

Let T = LB(LA)−1. We have

TAT> = LBL−1
A LAL>AL−>A L>B

= LBL>B

= B,

i.e. T]µ = ν. Further, since TLA is the Cholesky factor for B, and since A is supposed
non-singular, by unicity of the Cholesky decomposition T is the only lower triangular
matrix satisfying T]µ = ν. Hence, it is the KR transport map from µ to ν.

Finally, we have that

EX∼µ[‖X −TKRX‖2] = Tr(A + B− (A(TKR)> + TKRA))

= Tr(LAL>A + LBL>B − (LAL>B + LBL>A))

= ‖LA − LB‖2.

Corollary 3.10. The (square root) cost of the Knothe-Rosenblatt transport (EX∼µ[‖X −
TKRX‖2])1/2 between centered gaussians defines a distance (i.e. it satisfies all three metric
axioms).

Proof. This comes from the fact that
(
EX∼µ[‖X −TKRX‖2]

)1/2
= ‖LA − LB‖.

As can be expected from the fact that MK can be seen as a generalization of KR, the
MK transportation map is linear and has a block-triangular structure. The next proposition
shows that the MK transport map can be expressed as a function of the Schur complements

A/AE
def
= AE⊥ −A>EE⊥A−1

E AEE⊥ and B/BE
def
= BE⊥ −B>EE⊥B−1

E BEE⊥

of A w.r.t. AE , and B w.r.t. BE , which are the covariance matrices of µ (resp. ν)
conditioned on E.

Proposition 3.11 (Monge-Knothe (MK) Transport for Gaussians). Let A and B be
represented in an orthonormal basis w.r.t. E ⊕ E⊥. The MK transport map on E between
µ = N (0d,A) and ν = N (0d,B) is linear, and represented by the following matrix:

TMK =

(
TAEBE 0k×(d−k)[

B>
EE⊥

(TAEBE )−1 −T(A/AE)(B/BE)A>
EE⊥

]
(AE)−1 T(A/AE)(B/BE)

)
.

Proof. As can be seen from the structure of the MK transport map in Definition 3.4, TMK has
a lower block-triangular Jacobian (with block sizes k and d− k), with PSD matrices on the
diagonal (corresponding to the Jacobians of the Monge maps (i) between marginals and (ii)
between conditionals). Further, since µ and ν are Gaussian measures, their disintegrations
are Gaussian as well. Hence, all Monge maps from the disintegrations of µ to that of ν are
linear, and therefore the matrix representing T is equal to its Jacobian. One can check
that the map T in the proposition verifies TAT> = B and is of the right form. Finally,
one can verify that it is the unique such matrix, hence it is the MK transport map.

5 Selecting the Supporting Subspace

Both MI and MK transports are highly dependent on the chosen subspace E. Depending
on applications, E can either be prescribed (e.g. if one has access to a transport map
between the marginals in a given subspace) or has to be selected. In the latter case, we give
guidelines on how prior knowledge can be used, and alternatively propose an algorithm for
minimizing the MK distance.
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0

1

(a) Usual Monge Interpolation of Gaussians

E
0

1

(b) Monge-Knothe Interpolation through E

Figure 3.3: (a) Wasserstein-Bures geodesic and (b) Monge-Knothe interpolation through
E = {(x, y) : x = y} from µ0 to µ1, at times t = 0, 0.25, 0.5, 0.75, 1.

Subspace selection using prior knowledge. When prior knowledge is available, one
can choose a mediating subspace E to enforce specific criteria when comparing two distri-
butions. Indeed, if the directions in E are known to correspond to given properties of the
data, then MK or MI transport privileges those properties when matching distributions
over those not encoded by E. In particular, if one has access to features X from a reference
dataset, one can use principal component analysis (PCA) and select the first k principal
directions to compare datasets X1 and X2. MK and MI then allow comparing X1 and X2

using the most significant features from the reference X with higher priority. In section 6,
we experiment this method on word embeddings.

Minimal Monge-Knothe subspace. Alternatively, in the absence of prior knowledge, it
is natural to aim at finding the subspace which minimizes MK. Unfortunately, optimization
on the Grassmann manifold is quite hard in general, which makes direct optimization of MK
w.r.t. E impractical. Optimizing with respect to an orthonormal matrix V of basis vectors
of Rd is a more practical parameterization, which allows to perform projected gradient
descent (Algorithm 3). The projection step consists in computing a polar decomposition,
as the projection of a matrix V onto the set of unitary matrices is the unitary matrix in
the polar decomposition of V. The proposed initialization is V = Polar(AB), as this is the
optimal solution when A and B are co-diagonalizable. Note that since the function being
minimized is non-convex, Algorithm 3 is only guaranteed to converge to a local minimum.
In section 6, experimental evaluation of Algorithm 3 is carried out on noise-contaminated
synthetic data (Figure 3.6) and on a domain adaptation task with Gaussian mixture models
on the Office Home dataset [Venkateswara et al., 2017] with inception features (Figure 3.7).
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Algorithm 3 MK Subspace Selection
Input: A,B ∈ PSD, k ∈ [[1, d]], η

V← Polar(AB)
while not converged do
L ← MK(V>AV,V>BV; k)
V← V − η∇VL
V← Polar(V)

end while
Output: E = Span{v1, ..,vk}

6 Experiments

(a) Gray Source (b) Gray OT (c) Gray Target

Figure 3.4: OT color transfer between gray projections.

(a) Source (b) Full OT (2.67s) (c) MK (0.052s) (d) Sliced (0.057s) (e) Target

Figure 3.5: Color transfer, after quantization using 3000 k-means clusters, with correspond-
ing runtimes.

Color transfer. Given a source and a target image, the goal of color transfer is to map
the color palette of the source image (represented by its RGB histogram) into that of the
target image. A natural toolbox for such a task is optimal transport, see e.g. Bonneel et al.
[2015], Ferradans et al. [2014], Rabin et al. [2014]. First, a k-means quantization of both
images is computed. Then, the colors of the pixels within each source cluster are modified
according to the optimal transport map between both color distributions. In Figure 3.5,
we illustrate discrete MK transport maps for color transfer. In this setting, we project
images on the 1D space of grayscale images, relying on the 1D OT sorting-based algorithm
(Figure 3.4). Then, we solve small 2D OT problems on the corresponding disintegrations.
We compare this approach with classic full OT maps and a sliced OT approach (with 100
random projections). As can be seen in Figure 3.5, MK results are visually very similar to
that of full OT, with a x50 speedup allowed by the fast 1D OT sorting-based algorithm
that is comparable to sliced OT.

Synthetic data. We test the behavior of MK and MI in a noisy environment, where
the signal is supported in a subspace of small dimension. We represent the signal using
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two normalized PSD matrices A,B ∈ Rd1×d1 and sample noise Σ1,Σ2 ∈ Rd2×d2 , d2 ≥ d1

from a Wishart distribution with parameter I. We then build the noisy covariance Aε =(
A 0
0 0

)
+ εΣ1 ∈ Rd2×d2 (and likewise Bε) for different noise levels ε and compute MI and

MK distances along the first k directions, k = 1, ..., d2. As can be seen in Figure 3.6, both
MI and MK curves exhibit a local minimum or an “elbow” when k = d1, i.e. when E
corresponds to the subspace where the signal is located. However, important differences in
the behaviors of MI and MK can be noticed. Indeed, MI has a steep decreasing curve from
1 to d1 and then a slower decreasing curve. This is explained by the fact that MI transport
computes the OT map along the k directions of E only, and treats the conditionals as
being independent. Therefore, if k ≥ d1, all the signal has been fitted and for increasing
values of k MI starts fitting the noise as well. On the other hand, MK transport computes
the optimal transport on both E and the corresponding (d2 − k)-dimensional conditionals.
Therefore, if k 6= d1, either or both maps fit a mixture of signal and noise. Local maxima
correspond to cases where the signal is the most contaminated by noise, and minima k = d1,
k = d2 to cases where either the marginals or the conditionals are unaffected by noise.
Using Algorithm 3 instead of the principle directions allows to find better subspaces than
the first k directions when k ≤ d1, and then behaves similarly (up to the gradient being
stuck in local minima and thus being occasionally less competitive). Overall, the differences
in behavior of MI and MK show that MI is more adapted to noisy environments, and
MK to applications where all directions are meaningful, but where one wishes to prioritize
fitting on a subset of those directions, as shown in the next experiment.
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Figure 3.6: (a)-(b): Difference between (a) MI and Bures and (b) MK and Bures metrics
for different noise levels ε and subspace dimensions k. (c): Corresponding Bures values.
For each ε, 100 different noise matrices are sampled. Points show mean values, and shaded
areas the 25%-75% and 10%-90% percentiles. Top row: d1 = 4, d2 = 8. Bottom row:
d1 = 4, d2 = 16.

Semantic mediation. We experiment using reference features for comparing distribu-
tions with elliptical word embeddings [Muzellec and Cuturi, 2018], which represent each
word from a given corpus using a mean vector and a covariance matrix. For a given
embedding, we expect the principal directions of its covariance matrix to be linked to its
semantic content. Therefore, the comparison of two words w1, w2 based on the principal
eigenvectors of a context word c should be impacted by the semantic relations of w1 and
w2 with respect to c, e.g. if w1 is polysemous and c is related to a specific meaning. To test
this intuition, we compute the nearest neighbors of a given word w according to the MK
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distance with E taken as the subspace spanned by the principal directions of two different
contexts c1 and c2. We exclude means and compute MK based on covariances only, and
look at the symmetric difference of the returned sets of words (i.e. words in KNN(w|c1)
but not in KNN(w|c2), and inversely). Table 3.1 shows that specific contexts affect the
nearest neighbors of ambiguous words.

Table 3.1: Symmetric differences of the 20-NN sets of w given c1 minus w given c2 using
MK. Embeddings are 12× 12 pretrained normalized covariance matrices from [Muzellec
and Cuturi, 2018]. E is spanned by the 4 principal directions of the contexts. Words are
printed in increasing distance order.

Word Context 1 Context 2 Difference
instrument monitor oboe cathode, monitor, sampler, rca, watts, instrumentation, telescope, synthesizer, ambient

oboe monitor tuned, trombone, guitar, harmonic, octave, baritone, clarinet, saxophone, virtuoso
windows pc door netscape, installer, doubleclick, burner, installs, adapter, router, cpus

door pc screwed, recessed, rails, ceilings, tiling, upvc, profiled, roofs
fox media hedgehog Penny, quiz, Whitman, outraged, Tinker, ads, Keating, Palin, show

hedgehog media panther, reintroduced, kangaroo, Harriet, fair, hedgehog, bush, paw, bunny

MK domain adaptation with Gaussian mixture models. Given a source dataset
of labeled data, domain adaptation (DA) aims at finding labels for a target dataset by
transfering knowledge from the source. Such a problem has been successfully tackled
using OT-based techniques [Courty et al., 2014]. We illustrate using MK Gaussian maps
on a domain adaptation task where both source and target distributions are modeled
by a Gaussian mixture model (GMM). We use the Office Home dataset [Venkateswara
et al., 2017], which comprises 15000 images from 65 different classes across 4 domains:
Art, Clipart, Product and Real World. For each image, we consider 2048-dimensional
features taken from the coding layer of an inception model, as with Fréchet inception
distances [Heusel et al., 2017]. For each source/target pair, we represent the source as a
GMM by fitting one Gaussian per source class and defining mixture weights proportional
to class frequencies, and we fit a GMM with the same number of components on the
target. Since label information is not available for the target dataset, data from different
classes may be assigned to the same component. We then compute pairwise MK distances
between all source and target components, and solve for the discrete OT plan P using
those distances as costs and mixture weights as marginals (as in Chen et al. [2019] with
Bures distances). Finally, we map the source distribution on the target by computing the
P -barycentric projection of the component-wise MK maps 1∑

j Pij

∑
j PijT

ij
MK, and assign

target labels using 1-NN prediction over the mapped source data. The same procedure is
applied using Bures distances between the projections on E. We use Algorithm 3 between
the empirical covariance matrices of the source and target datasets to select the supporting
subspace E, for different values of the supporting dimension k (Figure 3.7).

Several facts can be observed from Figure 3.7. First, using the full 2048-dimensional
Bures maps is regularly sub-optimal compared to Bures (resp. MK) maps on a lower-
dimensional subspace, even though this is dependent on the source/target combination.
This shows the interest of not using all available features equally in transport problems.
Secondly, when E is chosen using the minimizing algorithm 3, in most cases MK maps
yield equivalent or better classification accuracy that the corresponding Bures maps on
the projections, even though they have the same projections on E. However, as can be
expected, this does not hold for an arbitrary choice of E (not shown in the figure). Due
to the relative simplicity of this DA method (which models the domains as GMMs), we
do not aim at comparing with state-of-the-art OT DA methods Courty et al. [2014, 2017]
(which compute transportation plans between the discrete distributions directly). The goal
is rather to illustrate how MK maps can be used to compute maps which put higher priority
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Figure 3.7: Domain Adaptation: 1-NN accuracy scores on the Office Home dataset v.s.
dimension k. We compare the k-dimensional projected Bures maps with the E-MK maps
and the 2048-D Bures baseline. E is selected using Algorithm 3 between the source and
target covariance matrices for k = 32, 64, 128, 256, 512, 1024. Rows: sources, Columns:
targets.

on the most meaningful feature dimensions. Note also that the mapping between source
and target distributions used here is piecewise linear, and is therefore more regular.

Conclusion and Future Work

We have proposed in this chapter a new class of transport plans and maps that are built
using optimality constraints on a subspace, but defined over the whole space. We have
presented two particular instances, MI and MK, with different properties, and derived
closed formulations for Gaussian distributions. Future work includes exploring other
applications of OT to machine learning relying on low-dimensional projections, from which
subspace-optimal transport could be used to recover full-dimensional plans or maps.
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7 Appendix: Proof of Proposition 3.8

Proof. Let TE : A
−1/2
E (A

1/2
E BEA

1/2
E )1/2A

−1/2
E be the Monge map from µE

def
= (pE)]µ to

νE
def
= (pE)]ν. Let

V =



| | | |
v1 . . . vk vk+1 . . . vd
| | | |


 =

(
VE VE⊥

)
∈ Rd×d,

where (v1 . . . vk) is an orthonormal basis of E and (vk+1 . . . vd) an orthonormal basis of E⊥.
Let us denote XE

def
= pE(X) ∈ Rk and XE⊥

def
= pE⊥(X) ∈ Rk (and likewise for Y ). Denote

AE = pEAp>E ,AE⊥ = pE⊥Ap>E⊥ , and AEE⊥ = pEAp>E⊥ .

With these notations, let us decompose E[XY >] along E and E⊥:

E[XY >] = E[VEXE(VEYE)>] + E[VE⊥XE⊥(VE⊥YE⊥)>]

+ E[VE⊥XE⊥(VEYE)>]

+ E[VEXE(VE⊥YE⊥)>].

We can condition all four terms on XE , and use independence given coordinates on E
which implies (YE |XE) = XE . The constraint YE = TEXE allows us to derive E [YE⊥ |XE ]:
indeed, it holds that (

YE
YE⊥

)
∼ N

(
0d,

(
BE BEE⊥

B>
EE⊥

BE⊥

))
,

which, using standard Gaussian conditioning properties, implies that

E [YE⊥ |YE = TEXE ] = B>EE⊥B−1
E TEXE ,

and therefore

E [YE⊥ |PE(Y ) = TEXE ] = VE⊥B>EE⊥B−1
E V>ETEXE .

Likewise,

E [XE⊥ |PE(X)] = VE⊥A>EE⊥A−1
E V>EXE .

We now have all the ingredients necessary to the derivation of the four terms of E[XY >]:

(i)

E[VEXE(VEYE)>] = VEEXE
[
E
[
XEY

>
E |XE

]]
V>E

= VEEXE
[
XEE

[
Y >E |XE

]]
V>E

= VEEXE
[
XEX

>
ET>E

]
V>E

= VEEXE
[
XEX

>
E

]
T>EV>E

= VEAETEV>E ;
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(ii)

E[VEXE(VE⊥YE⊥)>] = VEEXE
[
E[XEY

>
E⊥ |XE

]
V>E⊥

= VEEXE
[
XEE

[
Y >E⊥ |XE = TEXE

]]
V>E⊥

= VEEXE

[
XE

(
VE⊥B>EE⊥B−1

E V>ETEXE)
)>]

V>E⊥

= VEEXE
[
XEX

>
E

]
T>EVEB−>E BEE⊥V>E⊥

= VEAETEVEB−1
E BEE⊥V>E⊥

= VEAETEVEB−1
E V>EBEE⊥V>E⊥ ;

(iii)

E[VE⊥XE⊥(VEYE)>] = VE⊥EXE
[
E[XE⊥Y

>
E |XE

]
V>E

= VE⊥EXE
[
E [XE⊥ |XE ]X>ET>E

]
V>E

= VE⊥EXE
[
A>EE⊥A−1

E XEX
>
ET>E

]
V>E

= VE⊥VE⊥A>EE⊥A−1
E V>EATEV>E

= VE⊥VE⊥A>EE⊥TEV>E

= VE⊥A>EE⊥TEV>E ;

(iv)

E[VE⊥XE⊥(VE⊥YE⊥)>] = VE⊥EEXE
[
E[XE⊥ |XEE[Y >E⊥ |XE ]

]
V>E⊥

= VE⊥EXE
[
VE⊥A

>
EE⊥A

−1
E V>EXEX

>
ET>EVEB−>E BEE⊥

]
V>E⊥

= VE⊥A>EE⊥A−1
E V>EAETEVEB−1

E BEE⊥V>E⊥

= VE⊥A>EE⊥TEB−1
E BEE⊥V>E⊥

= VE⊥A>EE⊥TEVEB−1
E V>EBEE⊥ .

Let γ def
= N (02d,ΣπE ). γ, is well defined, since ΣπE is the covariance matrix of πE and

is thus PSD. From then, γ clearly has marginals N (0d,A) and N (0d,B), and (pE , pE)]γ is
a centered Gaussian distribution with covariance matrix

(
pE 0d×d

0d×d pE

)(
A Eπ[XY >]

Eπ[Y X>] B

)(
pE 0d×d

0d×d pE

)
=

(
AE AETE

TEAE BE

)
,

where we use that pEpE = pE and pEpE⊥ = 0. From the k = d case, we recognise the
covariance matrix of the optimal transport between centered Gaussians with covariance
matrices AE and BE , which proves that the marginal of γ over E × E is the optimal
transport between µE and νE .

To complete the proof, there remains to show that the disintegration of γ on E × E is
the product law. Denote

C
def
= E[XY >]

= VEAETE

(
V>E + (BE)−1V>EBEE⊥

)
+ VE⊥AE⊥ETE

(
V>E + (BE)−1V>EBEE⊥

)

= (VEAE + VE⊥AE⊥E) TE

(
V>E + (BE)−1BEE⊥V>E⊥

)
,
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and let ΣπMI =

(
A E[XY >]

E[Y X>] B

)
as in Proposition 3.8. It holds that

CE
def
= V>ECVE = AETE ,

CE⊥
def
= V>E⊥CVE = AE⊥ETE(BE)−1BEE⊥ ,

CEE⊥
def
= V>ECVE⊥ = AETE(BE)−1BEE⊥ ,

CE⊥E
def
= V>E⊥CVE = AE⊥ETE .

Therefore, if (X,Y ) ∼ γ, then

Cov(X,Y )∼γ




XE⊥

YE⊥
XE

YE


 =




AE⊥ CE⊥ AE⊥E CE⊥E

CE⊥ BE⊥ C>
EE⊥

BE⊥E

AEE⊥ CEE⊥ AE CE

C>
E⊥E

BEE⊥ CE BE


 ,

and therefore

Cov

(
XE⊥ |XE

YE⊥ |YE

)
=

(
AE⊥ CE⊥

CE⊥ BE⊥

)
−
(

AE⊥E CE⊥E

C>
EE⊥

BE⊥E

)(
AE CE

CE BE

)†(
AEE⊥ CEE⊥

C>
E⊥E

BEE⊥

)
,

where M† denotes the Moore-Penrose pseudo-inverse of M. In the present case, one
can check that

(
AE CE

CE BE

)†
=

1

4

(
A−1
E A−1

E T−1
E

T−1
E A−1

E B−1
E

)
,

which gives after simplification

(
AE⊥E CE⊥E

C>
EE⊥

BE⊥E

)(
AE CE

CE BE

)†(
AEE⊥ CEE⊥

C>
E⊥E

BEE⊥

)
=

(
AE⊥EA−1

E AEE⊥ CE⊥

CE⊥ BE⊥EB−1
E BEE⊥

)
,

and thus

Cov

(
XE⊥ |XE

YE⊥ |YE

)
=

(
AE⊥ −AE⊥E(AE)−1AEE⊥ 0d

0d BE⊥ −BE⊥E(BE)−1BEE⊥

)

=

(
Cov(XE⊥ |XE) 0d

0d Cov(YE⊥ |YE)

)
,

that is, the conditional laws of XE⊥ given XE and YE⊥ given YE are independent under
γ.



Chapter 4

Entropic Optimal Transport between
(Unbalanced) Gaussian Measures

Although optimal transport (OT) problems admit closed form solutions in a very few
notable cases, e.g. in 1D or between Gaussians, these closed forms have proved extremely
fecund for practitioners to define tools inspired from the OT geometry. On the other
hand, the numerical resolution of OT problems using entropic regularization has given rise
to many applications, but because there are no known closed-form solutions for entropic
regularized OT problems, these approaches are mostly algorithmic, not informed by elegant
closed forms. In this chapter, we propose to fill the void at the intersection between
these two schools of thought in OT by proving that the entropy-regularized optimal
transport problem between two Gaussian measures admits a closed form. Contrary to the
unregularized case, for which the explicit form is given by the Wasserstein-Bures distance,
the closed form we obtain is differentiable everywhere, even for Gaussians with degenerate
covariance matrices. We obtain this closed form solution by solving the fixed-point equation
behind Sinkhorn’s algorithm, the default method for computing entropic regularized OT.
Remarkably, this approach extends to the generalized unbalanced case — where Gaussian
measures are scaled by positive constants. This extension leads to a closed form expression
for unbalanced Gaussians as well, and highlights the mass transportation / destruction
trade-off seen in unbalanced optimal transport. Moreover, in both settings, we show that
the optimal transportation plans are (scaled) Gaussians and provide analytical formulas of
their parameters. These formulas constitute the first non-trivial multivariate closed forms
for unbalanced entropy-regularized optimal transport, thus providing a ground truth for
the analysis of (unbalanced) entropic OT and Sinkhorn’s algorithm.

This chapter is based on [Janati and Muzellec et al., 2020].

83
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1 Introduction

Optimal transport (OT) theory [Villani, 2008, Figalli, 2017] has recently inspired several
works in data science, where dealing with and comparing probability distributions, and
more generally positive measures, is an important staple (see [Peyré et al., 2019] and
references therein). For these applications of OT to be successful, a belief now widely
shared in the community is that some form of regularization is needed for OT to be
both scalable and avoid the curse of dimensionality [Dereich et al., 2013, Fournier and
Guillin, 2015]. Two approaches have emerged in recent years to achieve these goals: either
regularize directly the measures themselves, by looking at them through a simplified lens;
or regularize the original OT problem using various modifications. The first approach
exploits well-known closed-form identities for OT when comparing two univariate measures
or two multivariate Gaussian measures. In this approach, one exploits those formulas
and operates by summarizing complex measures as one or possibly many univariate or
multivariate Gaussian measures. The second approach builds on the fact that for arbitrary
measures, regularizing the OT problem, either in its primal or dual form, can result in
simpler computations and possibly improved sample complexity. The latter approach can
offer additional benefits for data science: because the original marginal constraints of the
OT problem can also be relaxed, regularized OT can also yield useful tools to compare
measures with different total mass — the so-called “unbalanced” case [Benamou, 2003]—
which provides a useful additional degree of freedom. Our work in this chapter stands at
the intersection of these two approaches. To our knowledge, that intersection was so far
empty: no meaningful closed-form formulation was known for regularized optimal transport.
We provide closed-form formulas of entropic (OT) of two Gaussian measures for balanced
and unbalanced cases.

Summarizing measures vs. regularizing OT. Closed-form identities to compute
OT distances (or more generally recover Monge maps) are known when either (1) both
measures are univariate and the ground cost is submodular [Santambrogio, 2015, §2]: in
that case evaluating OT only requires integrating that submodular cost w.r.t. the quantile
distributions of both measures; or (2) both measures are Gaussian, in a Hilbert space, and
the ground cost is the squared Euclidean metric [Dowson and Landau, 1982, Gelbrich,
1990], in which case the OT cost is given by the Wasserstein-Bures metric [Bhatia et al.,
2018, Malagò et al., 2018]. These two formulas have inspired several works in which data
measures are either projected onto 1D lines [Rabin et al., 2011, Bonneel et al., 2015], with
further developments in [Paty and Cuturi, 2019, Kolouri et al., 2019, Titouan et al., 2019];
or represented by Gaussians, to take advantage of the simpler computational possibilities
offered by the Wasserstein-Bures metric [Heusel et al., 2017, Muzellec and Cuturi, 2018,
Chen et al., 2019].

Various schemes have been proposed to regularize the OT problem in the primal [Cuturi,
2013, Frogner et al., 2015] or the dual [Shirdhonkar and Jacobs, 2008, Arjovsky et al., 2017,
Cuturi and Peyré, 2016]. We focus in this work on the formulation obtained by Chizat
et al. [2018b], which combines entropic regularization [Cuturi, 2013] with a more general
formulation for unbalanced transport [Chizat et al., 2018a, Liero et al., 2016, 2018]. The
advantages of unbalanced entropic transport are numerous: it comes with favorable sample
complexity regimes compared to unregularized OT [Genevay et al., 2019], can be cast
as a loss with favorable properties [Genevay et al., 2018, Feydy et al., 2019], and can be
evaluated using variations of the Sinkhorn algorithm [Genevay et al., 2016].

On the absence of closed-form formulas for regularized OT. Despite its appeal,
one of the shortcomings of entropic regularized OT lies in the absence of simple test-cases
that admit closed-form formulas. While it is known that regularized OT can be related, in
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the limit of infinite regularization, to the energy distance [Ramdas et al., 2017], the absence
of closed-form formulas for a fixed regularization strength poses an important practical
problem to evaluate the performance of stochastic algorithms that try to approximate
regularized OT: we do not know of any setup for which the ground truth value of entropic
OT between continuous densities is known. The purpose of this chapter is to fill this gap,
and provide closed form expressions for balanced and unbalanced OT for Gaussian measures.
We hope these formulas will prove to be useful in two different ways: as a solution to
the problem outlined above, to facilitate the evaluation of new methodologies building on
entropic OT, and more generally to propose a more robust yet well-grounded replacement
to the Bures-Wasserstein metric.

Related work. From an economics theory perspective, Bojilov and Galichon [2016]
provided a closed form of for an “Equilibrium 2-sided matching problem” which is equivalent
to entropy regularized optimal transport. Second, a sequence of works in optimal control
theory Chen et al. [2016, 2018], Chen et al. [2016] studied stochastic systems, of which
entropy regularized optimal transport between Gaussian measures can be seen as a special
case, and found a closed form of the optimal dual potentials. Finally, a few recent concurrent
works provided a closed form of entropy regularized OT between Gaussian measures: first
Gerolin et al. [2020] found a closed form in the univariate case, then Mallasto et al. [2020]
and del Barrio and Loubes [2020] generalized the formula for multivariate Gaussian measures.
The closest works to this paper are certainly those of Mallasto et al. [2020] and del Barrio
and Loubes [2020] where the authors solved the balanced entropy regularized OT and
studied the Gaussian barycenters problem. To the best of our knowledge, the closed form
formula we provide for unbalanced OT is novel. Other differences between this paper and
the aforementioned papers are highlighted below.

Contributions. Our contributions can be summarized as follows:

• Theorem 4.2 provides a closed form expression of the entropic (OT) plan π, which is
shown to be a Gaussian measure itself (also shown in [Bojilov and Galichon, 2016,
Chen et al., 2016, Mallasto et al., 2020, del Barrio and Loubes, 2020]). Here, we
furthermore study the properties of the OT loss function: it remains well defined,
convex and differentiable even for singular covariance matrices unlike the Bures
metric.

• Using the definition of debiased Sinkhorn barycenters [Luise et al., 2019, Janati et al.,
2020a], Theorem 4.12 shows that the entropic barycenter of Gaussian measures is
Gaussian and its covariance verifies a fixed point equation similar to that of Agueh
and Carlier [2011]. Mallasto et al. [2020] and del Barrio and Loubes [2020] provided
similar fix point equations however by restricting the barycenter problem to the set
of Gaussian measures whereas we consider the larger set of sub-Gaussian measures.

• As in the balanced case, Theorem 4.14 provides a closed form expression of the
unbalanced Gaussian transport plan. The obtained formula sheds some light on
the link between mass destruction and the distance between the means of α, β in
Unbalanced OT.

Notations. Let N (a,A) denote the multivariate Gaussian distribution with mean a ∈ Rd
and variance A ∈ Sd++. f = Q(a,A) denotes the quadratic form f : x 7→ −1

2(x>Ax−2a>x)
with A ∈ Sd. For short, we denote Q(A) = Q(0,A). Whenever relevant, we follow the
convention 0 log 0 = 0. M+

p denotes the set of non-negative measures in Rd with a finite
p-th order moment and its subset of probablity measures Pp. For a non-negative measure
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α ∈ M+
p (Rd), L2(α) denotes the set of functions f : Rd → R such that Eα(|f |2) =∫

Rd |f |2dα < +∞.

2 Reminders on Optimal Transport

The Kantorovich problem. Let α, β ∈ P2 and let Π(α, β) denote the set of probability
measures in P2 with marginal distributions equal to α and β. The 2-Wasserstein distance
is defined as

W 2
2 (α, β)

def
= min

π∈Π(α,β)

∫∫

Rd×Rd

‖x− y‖2dπ(x, y). (4.1)

This is known as the Kantorovich formulation of optimal transport. When α is absolutely
continuous with respect to the Lebesgue measure (i.e. when α has a density), Equation (4.1)
can be equivalently rewritten using the Monge formulation, where T]α = β i.f.f. for all
Borel sets A, ν(T (A)) = α(A):

W 2
2 (α, β) = min

T :T]α=β

∫

Rd
‖x− T (x)‖2dα(x). (4.2)

The optimal map T ∗ in Equation (4.2) is called the Monge map.

The Wasserstein-Bures metric. Let N (m,Σ) denote the Gaussian distribution on
Rd with mean m ∈ Rd and covariance matrix Σ ∈ Sd++. A well-known fact [Dowson and
Landau, 1982, Takatsu, 2011] is that Equation (4.1) admits a closed form for Gaussian
distributions, called the Wasserstein-Bures distance (a.k.a. the Fréchet distance):

W 2
2 (N (a,A),N (b,B)) = ‖a− b‖2 + B2(A,B), (4.3)

where B is the Bures distance [Bhatia et al., 2018] between positive matrices:

B2(A,B)
def
= TrA + TrB− 2Tr(A

1
2 BA

1
2 )

1
2 . (4.4)

Moreover, the Monge map between two Gaussian distributions admits a closed form:
T ? : x→ TAB(x− a) + b, with

TAB def
= A−

1
2 (A

1
2 BA

1
2 )

1
2 A−

1
2 = B

1
2 (B

1
2 AB

1
2 )−

1
2 B

1
2 , (4.5)

which is related to the Bures gradient:

∇AB2(A,B) = Id −TAB. (4.6)

B(A,B) and its gradient can be computed efficiently on GPUs using Newton-Schulz
iterations which are provided in Algorithm 1 along with numerical experiments in the
appendix.

3 Entropy-Regularized Optimal Transport between
Gaussian Measures

Solving (4.1) can be quite challenging, even in a discrete setting [Peyré et al., 2019]. Adding
an entropic regularization term to (4.1) results in a problem which can be solved efficiently
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using Sinkhorn’s algorithm [Cuturi, 2013]. Let σ > 0. This corresponds to solving the
following problem:

OTσ(α, β)
def
= min

π∈Π(α,β)

∫∫

Rd×Rd

‖x− y‖2dπ(x, y) + 2σ2 KL(π‖α⊗ β), (4.7)

where KL(π‖α⊗ β)
def
=

∫∫
Rd×Rd

log
(

dπ
dαdβ

)
dπ is the Kullback-Leibler divergence (or relative

entropy). As in the Kantorovich case (4.1), OTσ can be studied with centered measures
with no loss of generality.

Lemma 4.1. Let α, β ∈ P and ᾱ, β̄ their respective centered transformations. It holds that

OTσ(α, β) = OTσ(ᾱ, β̄) + ‖a− b‖2. (4.8)

Proof. Let dᾱ(x) = dα(x+ a) (resp. dβ̄(y) = dβ(y + b), dπ̄(x, y) = dπ(x+ a, y + b), such
that ᾱ, β̄ and π̄ are centered. Then, ∀π ∈ Π(α, β),

(i) π̄ ∈ Π(ᾱ, β̄),

(ii) KL(π‖α⊗ β) = KL(π̄‖ᾱ⊗ β̄)

(iii)
∫∫

Rd×Rd

‖x− y‖2dπ̄(x, y) =

∫∫

Rd×Rd

‖(x− a)− (y − b)‖2dπ(x, y)

= ‖a− b‖2 +

∫∫

Rd×Rd

‖x− y‖2dπ(x, y)

Plugging (i)-(iii) into (4.7), we get OTσ(α, β) = OTσ(ᾱ, β̄) + ‖a− b‖2.

Dual problem and Sinkhorn’s algorithm. Compared to (4.1), (4.7) enjoys additional
properties, such as the uniqueness of the solution π∗. Moreover, problem (4.7) has the
following dual formulation:

OTσ(α, β) = max
f∈L2(α),
g∈L2(β)

Eα(f) + Eβ(g)− 2σ2
( ∫∫

Rd×Rd

e
f(x)+g(y)−‖x−y‖2

2σ2 dα(x)dβ(y)− 1
)
.

(4.9)

If α and β have finite second order moments, a pair of dual potentials (f, g) is optimal if
and only they verify the following optimality conditions β-a.s and α-a.s respectively [Mena
and Niles-Weed, 2019]:

e
f(x)
2σ2

(∫

Rd
e
−‖x−y‖2+g(y)

2σ2 dβ(y)

)
= 1, e

g(x)
2σ2

(∫

Rd
e
−‖x−y‖2+f(y)

2σ2 dα(y)

)
= 1. (4.10)

Moreover, given a pair of optimal dual potentials (f, g), the optimal transportation plan is
given by

dπ?

dαdβ
(x, y) = e

f(x)+g(y)−‖x−y‖2

2σ2 . (4.11)
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Starting from a pair of potentials (f0, g0), the optimality conditions (4.10) lead to an
alternating dual ascent algorithm, which is equivalent to Sinkhorn’s algorithm in log-
domain:

gn+1 =

(
y ∈ Rd → −2σ2 log

∫

Rd
e
−‖x−y‖2+fn(x)

2σ2 dα(x)

)
,

fn+1 =

(
x ∈ Rd → −2σ2 log

∫

Rd
e
−‖x−y‖2+gn+1(y)

2σ2 dβ(y)

)
.

(4.12)

Séjourné et al. [2019] showed that when the support of the measures is compact, Sinkhorn’s
algorithm converges to a pair of dual potentials. Here in particular, we study Sinkhorn’s
algorithm when α and β are Gaussian measures.

3.1 Closed form expression for Gaussian measures.

Theorem 4.2. Let A,B ∈ Sd++ and α ∼ N (a,A) and β ∼ N (b,B). Define Dσ =

(4A
1
2 BA

1
2 + σ4Id)

1
2 . Then,

OTσ(α, β) = ‖a− b‖2 + B2
σ(A,B), where (4.13)

B2
σ(A,B) = Tr(A + B−Dσ) + dσ2(1− log(2σ2)) + σ2 log det

(
Dσ + σ2Id

)
. (4.14)

Moreover, with Cσ = 1
2A

1
2 DσA

−1
2 − σ2

2 Id, the Sinkhorn optimal transportation plan is also
a Gaussian measure over Rd × Rd given by

π? ∼ N
(

( a
b ) ,

(
A Cσ
C>σ B

))
. (4.15)

Remark 4.3. While for our proof it is necessary to assume that A and B are positive
definite in order for them to have a Lebesgue density, notice that the closed form formula
given by Theorem 4.2 remains well-defined for positive semi-definite matrices. Moreover,
unlike the Bures-Wasserstein metric, OTσ is differentiable even when A or B are singular.

A simplified version of Theorem 4.2 was concurrently proven by Gerolin et al. [2020] for
univariate centered Gaussians. The proof we provide is more general and is broken down
into smaller results, Propositions 4.4 to 4.6 and lemma 4.8. Using Lemma 4.1, we can focus
in the rest of this section on centered Gaussians without loss of generality.

Sinkhorn’s algorithm and quadratic potentials. We obtain a closed form solution
of OTσ by considering quadratic solutions of (4.10). The following key proposition charac-
terizes the obtained potential after a pair of Sinkhorn iterations with quadratic forms.

Proposition 4.4. Let α ∼ N (0,A) and β ∼ N (0,B) and the Sinkhorn transform Tα :

RRd → RRd :

Tα(h)(x)
def
= − log

∫

Rd
e
−‖x−y‖2

2σ2 +h(y)dα(y). (4.16)

Let X ∈ Sd. If h = m + Q(X) i.e h(x) = m − 1
2x
>Xx for some m ∈ R, then Tα(h) is

well-defined if and only if X′
def
= σ2X + σ2A−1 + Id � 0. In that case,

(i) Tα(h) = Q(Y) +m′ where Y = 1
σ2 (X′−1 − Id) and m′ ∈ R is an additive constant,

(ii) Tβ(Tα(h)) is well-defined and is also a quadratic form up to an additive constant,
observing that Y′

def
= σ2Y + σ2B−1 + Id = X′−1 + σ2B−1 � 0 and using (i).
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Proof. The integrand of Tα(h)(x) can be written as

e
−‖x−y‖2

2σ2 +h(y)dα(y) ∝ e
−‖x−y‖2

2σ2 − 1
2

(y>Xy−y>A−1y)dy

∝ e−
1
2 (y>(

Id
σ2

+X+A−1)y)+x>y
σ2 dy

which is integrable if and only if X + A−1 + 1
σ2 Id � 0. Moreover, up to a multiplicative

factor, the exponentiated Sinkhorn transform is equivalent to a Gaussian convolution of an
exponentiated quadratic form. Lemma 4.17 applies:

e−Tα(h) =

∫

Rd
e
−‖x−y‖2

2σ2 +f(y)dα(y)

∝
∫

Rd
e
−‖x−y‖2

2σ2 +Q(X)(y)+Q(A−1)(y)dy

∝ exp
(
Q
(

Id
σ2

))
? exp

(
Q(X) +Q(A−1)

)

∝ exp
(
Q
(

Id
σ2

))
? exp

(
Q(X + A−1)

)

∝ exp
(
Q((Id + σ2X + σ2A−1)−1(X + A−1))

)
.

∝ exp

(
Q(

1

σ2
X′−1(X′ − Id))

)
.

∝ exp

(
Q(

1

σ2
(Id −X′−1))

)
.

Therefore Tα(h) is equal to Q( 1
σ2 (X′−1 − Id)), up to an additive constant.

Finally, since B and X′ are positive definite, the positivity condition of Y′ holds and
Tβ can be applied again to get Tβ(Tα(h)).

Consider the null inialization f0 = 0 = Q(0). Since σ2A−1 + Id � 0, Proposition 4.4
applies with X = 0 and a simple induction shows that (fn, gn) remain quadratic forms
for all n. Sinkhorn’s algorithm can thus be written as an algorithm on positive definite
matrices.

Proposition 4.5. Starting with null potentials, Sinkhorn’s algorithm is equivalent to the
followig iterations:

Fn+1 = σ2A−1 + G−1
n , Gn+1 = σ2B−1 + F−1

n+1, (4.17)

with F0 = σ2A−1+Id and G0 = σ2B−1+Id. Moreover, the sequence (Fn,Gn) is contractive
in the matrix operator norm and converges towards a pair of positive definite matrices
(F,G).

At optimality, the dual potentials are determined up to additive constants f0 and g0:
f

2σ2 = Q(U) + f0 and g
2σ2 = Q(V) + g0 where U and V are given by

F = σ2U + σ2A−1 + Id, G = σ2V + σ2B−1 + Id. (4.18)

Proof.

(i) Deriving the iterations. Let U0 = V0 = 0. Applying Proposition 4.4 to the initial
pair of potentials Q(U0),Q(V0) leads to the sequence of quadratic Sinkhorn potentials
fn
2σ2 = Q(Un) and fn

2σ2 = Q(Vn) where

Vn+1 =
1

σ2
((σ2Un + σ2A−1 + Id)−1 − Id)

Un+1 =
1

σ2
((σ2Vn+1 + σ2B−1 + Id)−1 − Id).
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The change of variable

Fn = σ2Un + σ2A−1 + Id

Gn = σ2Vn + σ2B−1 + Id

leads to (4.17).

(ii) Contractivity of the iterations. We now turn to show that this algorithm con-
verges. First, note that since F0,G0 ∈ Sd++, a straightforward induction shows that
∀n ≥ 0,Fn,Gn ∈ Sd++. Next, let us write the decoupled iteration on F:

F← σ2A−1 + (σ2B−1 + F−1)−1. (4.19)

Let ∀X ∈ Sd++, φ(X)
def
= σ2A−1 + (σ2B−1 + X−1)−1 ∈ Sd++. For X ∈ Sd++ and H ∈ Rd×d,

he first differential of φ w.r.t. the Frobenius inner product admits the following expression:

Dφ(X)[H] = (Id + σ2XB−1)−1H(σ2B−1X + Id)−1.

Hence, ‖Dφ(X)[H]‖op ≤ ‖(Id + σ2XB−1)−1‖2op‖H‖op. Plugging H = Id, we get that
‖Dφ(X)‖op = ‖(Id + σ2XB−1)−1‖2op. Finally, by matrix similarity

‖(Id + σ2XB−1)−1‖op = ‖(Id + σ2B−
1
2 XB−

1
2 )−1‖op.

Hence, to bound ‖Dφ(X)[H]‖op from above we need a lower bound on the smallest
eigenvalue of the iterates. For a matrix M, let λd(M) and λA(M) denote the smallest
(resp. largest) eigenvalue of M. From (4.19) and using Weyl’s inequality, we can bound
the smallest eigenvalue of Fn from under:

∀n ≥ 1, λd(Fn) ≥ σ2

λ1(A)
.

Hence, the iterates live in A def
= Sd++ ∩ {X : λd(X) ≥ σ2

λ1(A)}. Finally, for all X ∈ A,

‖(Id + σ2B−
1
2 XB−

1
2 )−1‖op =

1

λd(Id + σ2B−1/2XB−1/2)

=
1

1 + σ2λd(B−1/2XB−1/2)

≤ 1

1 + σ2λd(B−1)λd(X)

≤
(

1 +
σ4

λ1(B)λ1(A)

)−1

which proves that ‖Dφ(X)‖op ≤
(

1 + σ4

λ1(B)λ1(A)

)−1
< 1 for X ∈ A and σ2 > 0. The

same arguments hold for the iterates (Gn)n≥0, and show that the iterations (4.17) are
contractive, and thus convergent.

Closed-form solution of the fixed-point equation. Taking the limit of Sinkhorn’s
equations (4.17) along with the change of variable (4.18), there exists a pair of optimal
potentials determined up to an additive constant:

f

2σ2
= Q(U) = Q

(
1

σ2
(G−1 − Id)

)
,

g

2σ2
= Q(V) = Q

(
1

σ2
(F−1 − Id)

)
, (4.20)



3. ENT-OT BETWEEN GAUSSIAN MEASURES 91

where (F,G) is the solution of the fixed point equations

F = σ2A−1 + G−1, G = σ2B−1 + F−1. (4.21)

Let C
def
= AG−1. Combining both equations of (4.21) in one leads to

G = σ2B−1 + (G−1 + σ2A−1)−1,

which can be shown to be equivalent to

C2 + σ2C−AB = 0. (4.22)

Notice that since A and G−1 are positive definite, their product C = AG−1 is similar to

A
1
2 G−1A

1
2 . Thus, C has positive eigenvalues. Proposition 4.6 provides the only feasible

solution of (4.22).

Proposition 4.6. Let σ2 ≥ 0 and C satisfying Equation (4.22). Then,

C =

(
AB +

σ4

4
Id

)1
2
− σ2

2 Id

= A
1
2 (A

1
2 BA

1
2 + σ4

4 Id)
1
2 A−

1
2 − σ2

2 Id

. (4.23)

Proof. Combining the two equations in (4.21) yields

G = σ2B−1 + (G−1 + σ2A−1)−1

⇔ GA−1 = σ2B−1A−1 + (AG−1 + σ2Id)−1

⇔ C−1 = σ2(AB)−1 + (C + σ2Id)−1

⇔ C−1(C + σ2Id) = σ2(AB)−1(C + σ2Id) + Id

⇔ Id + σ2C−1 = σ2(AB)−1(C + σ2Id) + Id

⇔ C + σ2Id = σ2(AB)−1(C + σ2Id)C + C

⇔ C2 + σ2C−AB = 0. (4.24)

Let us now plug (4.23) in (4.22):

C2 = AB +
σ4

2
Id − σ2

(
AB +

σ4

4
Id

)1
2

= AB− σ2C,

which proves that (4.23) is indeed the solution of (4.22).
Finally, the second expression of C is obtained by observing that

(A
1
2 (A

1
2 BA

1
2 + σ4

4 Id)
1
2 A−

1
2 )2 = A

1
2 (A

1
2 BA

1
2 + σ4

4 Id)A−
1
2 = AB + σ4

4 Id,

i.e. that (
AB + σ4

4 Id

)1
2

= A
1
2 (A

1
2 BA

1
2 + σ4

4 Id)
1
2 A−

1
2 .

Corollary 4.7. The optimal dual potentials of (4.20) can be written in closed form as

U =
B

σ2
(C + σ2Id)−1 − Id

σ2
, V = (C + σ2Id)−1 A

σ2
− Id

σ2
. (4.25)

Moreover, U and V remain well-defined even for singular matrices A and B.
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Optimal transportation plan and OTσ. Using Corollary 4.7 and (4.20), Equation (4.11)
leads to a closed-form expression of π. To conclude the proof of Theorem 4.2, we introduce
lemma 4.8 that computes the OTσ loss at optimality. Detailed technical proofs are provided
in the appendix.

Lemma 4.8. Let A,B,C be invertible matrices such that H =
(

A C
C> B

)
� 0. Let α =

N (0,A), β = N (0,B), and π = N (0,H). Then,

(i)
∫∫

Rd×Rd

‖x− y‖2dπ(x, y) = Tr(A) + Tr(B)− 2Tr(C); (4.26)

(ii) KL (π‖α⊗ β) = 1
2

(
log det A + log det B− log det

(
A C
CT B

))
. (4.27)

Proof. It follows from elementary properties of Gaussian measures that the first and second
marginals of π are respectively α and β. Hence,
∫∫

Rd×Rd

‖x− y‖2dπ(x, y) =

∫∫

Rd×Rd

‖x‖2dπ(x, y) +

∫∫

Rd×Rd

‖y‖2dπ(x, y)− 2

∫∫

Rd×Rd

〈x, y〉dπ(x, y)

=

∫

Rd
‖x‖2dα(x) +

∫

Rd
‖y‖2dβ(y)− 2

∫∫

Rd×Rd

〈x, y〉dπ(x, y)

= Tr(A) + Tr(B)− 2Tr(C).

Next, using the closed-form expression of the Kullback-Leibler divergence between Gaussian
measures, we have

KL (π‖α⊗ β) = 1
2

(
Tr
[(

A 0
0 B

)−1 ( A C
CT B

)]
− 2n+ log det

(
A 0
0 B

)
− log det

(
A C
CT B

))

= 1
2

(
log det A + log det B− log det

(
A C
CT B

))
.

Closed-form expressions of the optimal transport plan and OTσ. We are now
ready to conclude the proof of Theorem 4.2. Using (4.11) and (4.20), we have

dπ

dxdy
(x, y) = exp

(
f(x) + g(y)− ‖x− y‖2

2σ2

)
dα

dx
(x)

dβ

dy
(y)

∝ exp

(
Q(A−1)(x) +

f(x) + g(y)− ‖x− y‖2
2σ2

+Q(B−1)(y)

)

∝ exp

(
Q(U + A−1)(x) +Q(V + B−1)(y) +Q(

Id
σ2
− Id
σ2

− Id
σ2

Id
σ2

)(x, y)

)

= exp

(
Q( U+A−1 0

0 V+B−1 )(x, y) +Q(
Id
σ2
− Id
σ2

− Id
σ2

Id
σ2

)(x, y)

)

= exp

(
Q(

Id
σ2

+U+A−1 − Id
σ2

− Id
σ2

Id
σ2

+V+B−1
)(x, y)

)

= exp

(
Q(

F
σ2
− Id
σ2

− Id
σ2

G
σ2

)(x, y)

)

= exp (Q(Γ)(x, y))
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with Γ
def
=

(
F/σ2 −Id/σ

2

−Id/σ
2 G/σ2

)
. Moreover, since G

2σ2 � 0 , and the Schur complement of Γ

satisfies (F−G−1)/σ2 = A−1 � 0, we have that Γ � 0. Therefore π is a Gaussian N (H)
where H = Γ−1 can be obtained using the block inverse formula:

H = Γ−1

= σ2

(
(F−G−1)−1 (GF− Id)−1

(FG− Id)−1 (G− F−1)−1

)

=

(
A C
C> B

)
,

where we used the optimality equations (4.21) and the definition of C = AG−1.

Let us now finally computeOTσ(α, β) using Lemma 4.8. Let R = A
1
2 BA

1
2 . Using the

closed form expression of C in (4.23), it first holds that

Z
def
= A−

1
2 CA

1
2 = (R + σ4

4 Id)
1
2 − σ2

2 Id. (4.28)

Moreover, since R = R>, it holds that Z = Z>. Hence,

det
(

A C
CT B

)
= det(A) det(B−C>A−1C)

= det(A
1
2 BA

1
2 −A

1
2 C>A−1CA

1
2 )

= det(R− Z>Z)

= det(R− Z2)

= det(σ2(R +
σ4

4
Id)

1
2 − σ4

2
Id)

= (σ2/2)d det((4R + σ4Id)
1
2 − σ2Id).

(4.29)

Since the matrices inside the determinant commute, we can use the identity P − Q =
(P2 −Q2)(P + Q)−1 to get rid of the negative sign. Equation (4.29) then becomes

(σ2/2)d det((4R + σ4Id)
1
2 − σ2Id) = (σ2/2)d det(4R) det

(
((4R + σ4Id)

1
2 + σ2Id)−1

)

= (2σ2)d det(AB) det
(

((4R + σ4Id)
1
2 + σ2Id)−1

)
.

Plugging this expression in (4.27), the determinants of A and B cancel out and we finally
get

Bσ2(A,B) = Tr(A) + Tr(B)− Tr(4A
1
2 BA

1
2 + σ4Id)

1
2

+ σ2 log det
(

(4A
1
2 BA

1
2 + σ4Id)

1
2 + σ2Id

)
+ σ2d(1− log(2σ2)).

3.2 Properties of Bσ2.

Theorem 4.2 shows that π has a Gaussian density. Proposition 4.9 allows to reformulate
this optimization problem over couplings in Rd×d with a positivity constraint.

Proposition 4.9. Let α = N (0,A), β = N (0,B), and σ2 > 0. Then,

OTσ(α, β) = Bσ2(A,B)

= min
C:
(

A C
CT B

)
≥0

{
Tr(A + B− 2C) + σ2(log det AB− log det

(
A C
CT B

)
)
}

(4.30)

= min
K∈Rd×d:‖K‖op≤1

TrA + TrB− 2TrA
1
2 KB

1
2 − σ2 ln det(Id −KK>). (4.31)

Moreover, both (4.30) and (4.31) are convex problems.
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Proof. Using Lemma 4.8, (4.7) becomes

B2
σ(A,B) = min

C:
(

A C
CT B

)
≥0

{
Tr(A) + Tr(B)− 2Tr(C)

+ σ2(log det A + log det B− log det
(

A C
CT B

)
)
}
,

which gives (4.30).
Let us now prove (4.31). A necessary and sufficient condition for

(
A C
CT B

)
≥ 0 is that

there exists a contraction K (i.e. K ∈ Rd×d s.t. ‖K‖op ≤ 1) such that C = A
1
2 KB

1
2 [Bhatia,

2007, Ch. 1]. With this parameterization, we have (using Schur complements) that

det
(

A C
CT B

)
= det B det(A−CB−1C>)

= det B det A det(Id −KK>).

Hence, injecting this in Equation (4.30), we have the following equivalent problem:

B2
σ(A,B) = min

K∈Rd×d:‖K‖op≤1
TrA + TrB− 2TrA

1
2 KB

1
2 − σ2 ln det(Id −KK>). (4.32)

Let’s prove that both problems are convex.

• (4.30): The set {C :
(

A C
CT B

)
≥ 0} is convex, since

(
A C1

CT1 B

)
≥ 0 and

(
A C2

CT2 B

)
≥ 0

implies that
(

A (1−θ)C1+θC2

(1−θ)CT1 +θCT2 B

)
= (1− θ)

(
A C1

CT1 B

)
+ θ

(
A C2

CT2 B

)
≥ 0.

Following the same decomposition, the concavity of the log det function implies that
C → log det

(
A C
CT B

)
is concave, and hence that the objective function of (4.30) is

convex;

• (4.31): The ball Bop
def
= {K ∈ Rd×d : ‖K‖op ≤ 1} is obviously convex. Hence, there

remains to prove that f(K) : K ∈ Bop → log det(Id −KK>) is concave. Indeed, it
holds that f(K) = log det

(
Id K
KT Id

)
. Hence, ∀K,H ∈ Bop,∀t ∈ [0, 1],

f((1− t)K + tH) = log det
{

(1− t)
(

Id K
KT Id

)
+ t
(

Id H
HT Id

)}

≥ (1− t) log det
(

Id K
KT Id

)
+ t log det

(
Id H
HT Id

)

= (1− t)f(K) + tf(H),

where the second line follows from the concavity of log det.

We now study the convexity and differentiability of Bσ2 , which are more conveniently
derived from the dual problem of (4.30) given as a positive definite program:

Proposition 4.10. The dual problem of (4.30) can be written with no duality gap as

max
F,G�0

{
− 〈F, A〉 − 〈G, B〉+ σ2 log det (FG− Id)

+ Tr(A) + Tr(B) + σ2 log det AB + 2dσ2(1− log σ2))
}
.

(4.33)
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Proof. By Proposition 4.9, (4.30) is convex, hence strong duality holds. Ignoring the terms
not depending on C, problem (4.30) can be written using the redundant parameterization
X =

(
X1 X2
X3 X4

)
:

D(A,B)
def
= min

X�0
X1=A,X4=B

− Tr(X2)− Tr(X3)− σ2 log det (X) (4.34)

= min
X�0

X1=A,X4=B

− 〈X,
(

0 Id
Id 0

)
〉 − σ2 log det (X) (4.35)

= min
X�0

X1=A,X4=B

F(X), (4.36)

where the functional F is convex. Moreover, its Legendre transform is given by

F?(Y) = max
X�0
〈X,Y +

(
0 Id
Id 0

)
〉+ σ2 log det (X)

=
(
−σ2 log det)?

(
Y +

(
0 Id
Id 0

)))

= σ2(− log det)?
(

1

σ2

(
Y +

(
0 Id
Id 0

)))

= −σ2log det

(
− 1

σ2

(
Y +

(
0 Id
Id 0

)))
− 2σ2d

= −σ2log det
(
−
(
Y +

(
0 Id
Id 0

)))
− 2d(σ2 − σ2 log(σ2)).

Let H be the linear operator H : X 7→ (X1,X4). Its conjugate operator is defined on
Sd++ ×Sd++ and is given by H?(F,G) =

(
F 0
0 G

)
. Therefore, Fenchel’s duality theorem leads

to

D(A,B) = max
F,G�0

− 〈F,A〉 − 〈G,B〉 − F? (−H?(F,G))

= max
F,G�0

− 〈F,A〉 − 〈G,B〉+ σ2 log det
(

F −Id
−Id G

)
+ 2σ2d(1− log(σ2))

= max
F,G�0

− 〈F,A〉 − 〈G,B〉+ σ2 log det (FG− Id) + 2σ2d(1− log(σ2)), (4.37)

where the last equality follows from the fact that Id and G commute. Therefore, reinserting
the discarded trace terms, the dual problem of (4.30) can be written as

max
F,G�0

{
− 〈F, A〉 − 〈G, B〉+ σ2 log det (FG− Id)

+ Tr(A) + Tr(B) + σ2 log det AB + 2dσ2(1− log σ2))
}
.

Feydy et al. [2019] showed that on compact spaces, the gradient of OTσ is given by
the optimal dual potentials. This result was later extended by Janati et al. [2020a] to
sub-Gaussian measures with unbounded supports. The following proposition re-establishes
this statement for Gaussian measures.

Proposition 4.11. Assume σ > 0 and consider the pair U,V of Corollary 4.7. Then

(i) The optimal pair (F∗,G∗) of (4.33) is a solution to the fixed point problem (4.21);

(ii) Bσ2 is differentiable and ∇Bσ2(A,B) = −(σ2U, σ2V). Thus,

∇ABσ2(A,B) = Id −B
1
2

(
(B

1
2 AB

1
2 +

σ4

4
Id)

1
2 +

σ2

2
Id

)−1

B
1
2 ;
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(iii) (A,B) 7→ Bσ2(A,B) is convex in A and in B, but not jointly;

(iv) For a fixed B with spectral decomposition B = PΣP>, the function φB : A 7→
Bσ2(A,B) is minimized at A0 = P(Σ− σ2Id)+P> where the thresholding operator +

is defined by x+ = max(x, 0) for any x ∈ R and extended element-wise to diagonal
matrices.

Proof.

(i) Optimality: Canceling out the gradients in (4.33) leads to the following optimality
conditions:

−A + σ2G(FG− Id)−1 = 0

−B + σ2(FG− Id)−1F = 0,
(4.38)

i.e.

F = σ2A−1 + G−1

G = σ2B−1 + F−1.
(4.39)

Thus (F,G) is a solution of the Sinkhorn fixed point equation (4.21).

(ii) Differentiabilty: Using Danskin’s theorem [Danskin, 1967] on problem (4.33) leads
to the formula of the gradient as a function of the optimal dual pair (F,G). Indeed,
keeping in mind that ∇A log det(A) = −A−1 and using the change of variable of
Proposition 4.5, we recover the dual potentials of Corollary 4.7:

∇Bσ2(A,B) =
(
Id − F∗ + σ2A−1, Id −G∗ + σ2B−1

)

= −σ2(U,V).

Using Corollary 4.7, it holds that

∇ABσ2(A,B) = −σ2U

= Id −B(C + σ2Id)−1

= Id −B

(
(AB +

σ4

4
Id)

1
2 +

σ2

2
Id

)−1

= Id −B
1
2

(
(B

1
2 AB

1
2 +

σ4

4
Id)

1
2 +

σ2

2
Id

)−1

B
1
2

= Id −B
1
2

(
D

1
2 +

σ2

2
Id

)−1

B
1
2 ,

where D
def
= B

1
2 AB

1
2 + σ4

4 Id.

(iii) Convexity: Assume without loss of generality that B is fixed and let G : B 7→
∇ABσ2(A,B). As long as σ > 0, G is differentiable as a composition of differentiable
functions. Let’s show that the Hessian of ψ : A 7→ Bσ2(A,B) is a positive quadratic
form. Take a direction H ∈ Sd+. It holds that

∇2
ABσ2(A,B)(H,H) = 〈H, JacG(A)(H)〉

= Tr(H JacG(A)(H)).
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For the sake of clarity, let us write G(A) = Id − L(W (φ(A))) with the following
intermediary functions:

L : A 7→ B
1
2 AB

1
2

Q : A 7→ A
1
2

φ : A 7→ Q(L(A) +
σ4

4
Id)

W : A 7→ (A +
σ2

2
Id)−1.

Moreover, their derivatives are given by

JacL(A)(H) = B
1
2 HB

1
2

JacW (A)(H) = −(A +
σ2

2
Id)−1H(A +

σ2

2
Id)−1

JacQ(A)(H) = Z,

where Z ∈ Sd+ is the unique solution of the Sylvester equation ZA
1
2 + A

1
2 Z = H.

Using the chain rule:

JacG(A)(H) = − JacL(W (φ(A)))(JacW (φ(A))(Jacφ(A)(H)))

= −B
1
2 JacW (φ(A))(Jacφ(A)(H))B

1
2

= B
1
2

(
φ(A) +

σ2

2
Id

)−1

Jacφ(A)(H)

(
φ(A) +

σ2

2
Id

)−1

B
1
2

= B
1
2

(
D

1
2 +

σ2

2
Id

)−1

Jacφ(A)(H)

(
D

1
2 +

σ2

2
Id

)−1

B
1
2 .

Again using the chain rule:

Y
def
= Jacφ(A)(H) = JacQ(L(A) +

σ4

4
Id)((JacL(A))(H))

= JacQ(L(A) +
σ4

4
Id)(B

1
2 HB

1
2 )

= JacQ(D)(B
1
2 HB

1
2 ).

Therefore, Y � 0 is the unique solution of the Sylvester equation:

YD
1
2 + D

1
2 Y = B

1
2 HB

1
2 .

Combining everything, we get

∇2
ABσ2(A,B)(H,H) = 〈H, JacG(A)(H)〉

= Tr (H JacG(A)(H))

= Tr

(
HB

1
2

(
D

1
2 +

σ2

2
Id

)−1

Y

(
D

1
2 +

σ2

2
Id

)−1

B
1
2

)

= Tr

(
B

1
2 HB

1
2

(
D

1
2 +

σ2

2
Id

)−1

Y

(
D

1
2 +

σ2

2
Id

)−1
)
.
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Since H and Y are positive, the matrices

B
1
2 HB

1
2 and

(
D

1
2 +

σ2

2
Id

)−1

Y

(
D

1
2 +

σ2

2
Id

)−1

are positive semi-definite as well. Their product is similar to a positive semi-definite
matrix, therefore the trace above is non-negative.

Hence, given that A and H are arbitrary positive semi-definite matrices, it holds that

∇2
ABσ2(A,B)(H,H) ≥ 0.

Therefore, A 7→ Bσ2(A,B) is convex.

Counter-example of joint convexity: If Bσ2 were jointly convex, then δ
def
= : A →

Bσ2(A,A) would be a convex function. In the 1-dimensional case with σ = 1, one
can see that this would be equivalent to x→ ln((x2 + 1)1/2 + 1)− (x2 + 1)1/2 being
convex, whereas it is in fact strictly concave.

(iv) Minimizer of φB: With fixed B, cancelling the gradient of φB
def
= : A 7→ Bσ2(A,B)

leads to A = B − σ2Id which is well defined if and only if B � σ2Id. However,
if B − σ2Id is not positive semi-definite, let us write the eigenvalue decomposition
B = PΣP> and define A0

def
= P(Σ− σ2Id)+P> where the operator x+ = max(x, 0)

is applied element-wise. Then,

∇AφB(A0) = Id −PΣ
1
2 P>

(
(P(Σ2 − σ2Σ)+P> +

σ4

4
Id)

1
2 +

σ2

2
Id

)−1

PΣ
1
2 P>

= Id −PΣ
1
2

(
((Σ2 − σ2Σ)+ +

σ4

4
Id)

1
2 +

σ2

2
Id

)−1

Σ
1
2 P>

= Id −PΣ
1
2
(
(Σ− σ2Id)+ + σ2Id

)−1
Σ

1
2 P>

= P(Id − Σ
1
2
(
(Σ− σ2Id)+ + σ2Id

)−1
Σ

1
2 )P>

=
1

σ2
P(σ2Id − Σ)+P>.

Thus, given that (Σ− σ2Id)+(σ2Id − Σ)+ = 0, for any H ∈ Sd+ it holds that

〈H−A0,∇AφB(A0)〉 = 〈P>HP− (Σ− σ2Id)+, (σ
2Id − Σ)+〉

= 〈P>HP, (σ2Id − Σ)+〉
= Tr(P>HP(σ2Id − Σ)+) ≥ 0,

where the last inequality holds since both matrices are positive semi-definite. Given
that φB is convex, the first order optimality condition holds so φB is minimized at
A0.

3.3 Debiased Sinkhorn Barycenters

When A and B are not singular, we recover the gradient of the Bures metric given in
(4.6) by letting σ → 0 in ∇ABσ2(A,B). Moreover, (iv) illustrates the entropy bias of
Bσ2 . Feydy et al. [2019] showed that it can be circumvented by considering the Sinkhorn
divergence:

Sσ : (α, β) 7→ OTσ(α, β)− 1

2
(OTσ(α, α) + OTσ(β, β)), (4.40)
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which is non-negative and equals 0 if and only if α = β. Using the differentiability and
convexity of Sσ on sub-Gaussian measures [Janati et al., 2020a], we conclude this section
by showing that the debiased Sinkhorn barycenter of Gaussian measures remains Gaussian.

Theorem 4.12. Consider the restriction of OTσ to the set of sub-Gaussian measures

G def
= {µ ∈ P2|∃q > 0, Eµ(eq‖X‖

2
) < +∞}

and K Gaussian measures αk ∼ N (ak,Ak) with a sequence of positive weights (wk)k=1,2,...,K

summing to 1. Then, the weighted debiased barycenter defined by

β
def
= argminβ∈G

∑

k=1

wkSσ(αk, β) (4.41)

is a Gaussian measure given by N
(∑K

k=1wkak,B
)
where B ∈ Sd+ is a solution of the

equation
K∑

k=1

wk(B
1
2 AkB

1
2 +

σ4

4
Id)

1
2 = (B2 +

σ4

4
Id)

1
2 . (4.42)

Proof. This theorem is a generalization of [Janati et al., 2020a, Thm 3] for multivariate
Gaussian measures. First, we are going to break it down using the centering Lemma 4.1. For
any probability measure µ, let µ̄ denote its centered counterpart. The debiased barycenter
problem is equivalent to

min
β∈G

K∑

k=1

wkSσ(αk, β)

= min
β∈G

K∑

k=1

wkOTσ(αk, β)− 1

2
(OTσ(αk, αk) + OTσ(β, β))

= min
β∈G

K∑

k=1

wk‖ak − Eβ(X)‖2 + wkOTσ(ᾱk, β̄)− 1

2
(wkOTσ(ᾱk, ᾱk) + OTσ(β̄, β̄))

= min
b∈Rd
β∈G

K∑

k=1

wk‖ak − b‖2 + wkOTσ(ᾱk, β̄)− 1

2
(wkOTσ(ᾱk, ᾱk) + OTσ(β̄, β̄))

(4.43)

Therefore, since both arguments are independent, we can first minimize over b to obtain
b =

∑K
k=1wkak. Without loss of generality, we assume from now on that ak = 0 for all k.

The rest of this proof is adapted from [Janati et al., 2020a, Thm 3], to d ≥ 1. Janati
et al. [2020a] showed that for sub-Gaussian measures Sσ is convex (w.r.t. one measure at a
time) and admits first variations: a function F : G → R has a first variation at α if there
exists δF (α)

δα ∈ C(Rd) such that for any displacement tχ with t > 0 and χ = α̃ − α with
α̃ ∈ G verifying

F (α+ tχ) = F (α) + t〈χ, δF (α)

δα
〉+ o(t) , (4.44)

where 〈χ, δF (α)
δα (α)〉 =

∫
Rd

δF (α)
δα dχ (see [Santambrogio, 2015, §7.2]).

Moreover, F is convex if and only if for any α, α′ ∈ G:

F (α) ≥ F (α′) + 〈α− α′, δF (α′)

δα
〉 , (4.45)

Let (fk, gk) denote the potentials associated with OTσ(αk, β), and hβ the autocorrelation
potential associated with OTσ(β, β). If β is sub-Gaussian, it holds that δSσ(αk,β)

δβ = gk−hβ .
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Therefore, from (4.45) a probability measure β is the debiased barycenter if and only if for
any direction µ ∈ G, the following optimality condition holds:

〈
K∑

k=1

wk
δSσ(αk, β)

δβ
, µ− β〉 ≥ 0

⇔
K∑

k=1

wk〈gk − hβ, µ− β〉 ≥ 0

(4.46)

Moreover, the potentials (fk), (gk) and h must verify the Sinkhorn optimality conditions
(4.10) for all k and for all x β-a.s and y α-a.s:

e
fk(x)
2σ2

(∫

Rd
e−
‖x−y‖2+gk(y)

2σ2 dβ(y)

)
= 1,

e
gk(x)
2σ2

(∫

Rd
e−
‖x−y‖2+fk(y)

2σ2 dαk(y)

)
= 1,

e
hβ(x)

2σ2

(∫

Rd
e−
‖x−y‖2+hβ(y)

2σ2 dβ(y)

)
= 1.

(4.47)

Let us now show that the Gaussian measure β given in the statement of the theorem
is well-defined and verifies all the optimality conditions (4.47). Indeed, assume that β
is a Gaussian measure given by N (B) for some unknown B ∈ Sd+ (remember that β is
necessarily centered, following the developments (4.43)). The Sinkhorn equations can then
be written as a system on positive definite matrices:

Fk = σ2A−1
k + G−1

k

Gk = σ2B + F−1
k

H = σ2B + H−1,

where for all k
fk

2σ2
= Q(

1

σ2
(G−1

k − Id)) + fk(0)

gk
2σ2

= Q(
1

σ2
(F−1

k − Id)) + gk(0)

hβ
2σ2

= Q(
1

σ2
(H−1 − Id)) + hβ(0).

(4.48)

Moreover, provided B exists and is positive definite, the system (4.48) has a unique set of
solutions (Fk)k, (Gk)k,H given by

Fk = BC−1
k , Gk = C−1

k Ak, and H = B−1J, (4.49)

where Ck = (AkB + σ4

4 Id)
1
2 − σ2

2 Id and J = (B2 + σ4

4 Id)
1
2 + σ2

2 Id. Therefore, the first
variation in the LHS of (4.46) can be written as

K∑

k=1

wk
δSσ(αk, β)

δβ
=

K∑

k=1

wk(gk − hβ)

= Q(
1

σ2
(

K∑

k=1

wkF
−1
k −H−1)) +

K∑

w=1

wk(gk(0)− hβ(0))

∝ Q(
K∑

k=1

wkCkB
−1 − J−1B) +

K∑

w=1

wk(gk(0)− hβ(0))

(4.50)



4. ENT-OT BETWEEN UNBALANCED GAUSSIAN MEASURES 101

and
K∑

k=1

wkCkB
−1 − J−1B

=
K∑

k=1

wkB
−1

2 (B
1
2 AkB

1
2 +

σ4

4
Id)

1
2 B−

1
2 −B−1(B2 +

σ4

4
Id)

1
2

=

K∑

k=1

wkB
−1

2 (B
1
2 AkB

1
2 +

σ4

4
Id)

1
2 B−

1
2 −B−

1
2 (B2 +

σ4

4
Id)

1
2 B−

1
2

= B−
1
2

(
K∑

k=1

wk(B
1
2 AkB

1
2 +

σ4

4
Id)

1
2 − (B2 +

σ4

4
Id)

1
2

)
B−

1
2 ,

(4.51)

which is null if and only if B is a solution of the equation
K∑

k=1

wk(B
1
2 AkB

1
2 +

σ4

4
Id)

1
2 = (B2 +

σ4

4
Id)

1
2 . (4.52)

Therefore, provided (4.52) holds, for any probability measure µ ∈ G:

〈
K∑

k=1

wk
δSσ(αk, β)

δβ
, µ− β〉 = 〈

K∑

k=1

wkgk − hβ, µ− β〉

= 〈
K∑

w=1

wkgk(0)− hβ(0), µ− β〉

=

(
K∑

w=1

wkgk(0)− hβ(0)

)∫
(dµ− dβ)

= 0,

(4.53)

since both measures integrate to 1. Therefore, the optimality condition holds.
To end the proof, there remains to show that (4.52) admits a positive definite solution.

To show the existence of a solution, the same proof as in [Agueh and Carlier, 2011] applies.
Indeed, let λd(Ak) and λ1(Ak) denote respectively the smallest and largest eigenvalue of
Ak. Let λ = mink λd(Ak) and Λ = maxk λ1(Ak). Let Kλ,Λ be the convex compact subset
of positive definite matrices B such that ΛId � B � λId. Define the map:

T :Kλ,Λ → Sd++

B 7→



(

K∑

k=1

wk(B
1
2 AkB

1
2 +

σ4

4
Id)

1
2

)2

− σ4

4
Id




1/2

.

Now for any B ∈ Kλ,Λ, it holds that

λId � T (B) � ΛId. (4.54)

T is therefore a continuous map that maps Kλ,Λ to itself, thus Brouwer’s fixed-point
theorem guarantees the existence of a solution.

4 Entropy Regularized OT between Unbalanced Gaussian
Measures

We proceed by considering a more general setting, in which measures α, β ∈M+
2 (Rd) have

finite integration masses mα = α(Rd) and mβ = β(Rd) that are not necessarily the same.
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Following [Chizat et al., 2018b], we define entropy-regularized unbalanced OT as

UOTσ(α, β)
def
= inf

π∈M+
2

{ ∫∫

Rd×Rd

‖x− y‖2dπ(x, y)

+ 2σ2 KL(π‖α⊗ β) + γKL(π1‖α) + γKL(π2‖β)
}
,

(4.55)

where γ > 0 and π1, π2 are the marginal distributions of the coupling π ∈M+
2 (R2 × Rd).

Duality and optimality conditions. The KL divergence in (4.55) is finite if and only
if π admits a density with respect to α⊗ β. Moreover, the objective is finite if and only if

dπ
dαdβ ∈ L2(α⊗ β). Therefore (4.55) can be formulated as a variational problem:

UOTσ(α, β) = inf
r∈L2(α⊗β)

{ ∫∫

Rd×Rd

‖x− y‖2r(x, y)dα(x)dβ(y)

+ 2σ2 KL(r‖α⊗ β) + γKL(r1‖α) + γKL(r2‖β)
}
,

(4.56)

where r1
def
=
∫
Rd r(., y)dβ(y) and r2

def
=
∫
Rd r(x, .)dα(x) correspond to the marginal density

functions and the Kullback-Leibler divergence is defined for f ∈ L2(µ) as KL(f‖µ) =∫
Rd(f log(f) + f − 1)dµ. As in Chizat et al. [2018b], Fenchel-Rockafellar duality holds and

(4.56) admits the following dual problem:

UOTσ(α, β) = sup
f∈L2(α)
g∈L2(β)

{
γ

∫

Rd
(1− e−

f
γ )dα+ γ

∫

Rd
(1− e−

g
γ )dβ

− 2σ2

∫∫

Rd×Rd

(e
−‖x−y‖2+f(x)+g(y)

2σ2 − 1)dα(x)dβ(y)
}
,

(4.57)

for which the necessary optimality conditions read, with τ def
= γ

γ+2σ2 , as

f(x)

2σ2

a.s
= −τ log

∫

Rd
e
g(y)−‖x−y‖2

2σ2 dβ(y) and
g(x)

2σ2

a.s
= −τ log

∫

Rd
e
f(y)−‖x−y‖2

2σ2 dα(y). (4.58)

Moreover, if such a pair of dual potentials exists, then the optimal transportation plan is
given by

dπ

dα⊗ dβ
(x, y) = e

f(x)+g(y)−‖x−y‖2

2σ2 . (4.59)

The following proposition provides a simple formula to compute UOTσ at optimality. It
shows that it is sufficient to know the total transported mass π(Rd × Rd).

Proposition 4.13. Assume there exists an optimal transportation plan π∗, solution of
(4.55). Then

UOTσ(α, β) = γ(mα +mβ) + 2σ2mαmβ − 2(σ2 + γ)π∗(Rd × Rd). (4.60)
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Proof. Using Fubini-Tonelli along with the optimality conditions (4.58), we can write the
total mass of the optimal transportation plan as

π(Rd × Rd) =

∫∫

Rd×Rd

e
−‖x−y‖2+f(x)+g(y)

2σ2 dα(x)dβ(y)

=

∫

Rd

(∫

Rd
e
−‖x−y‖2+f(x)

2σ2 dα(x)

)
e
g(y)

2σ2 dβ(y)

=

∫

Rd
e
g(y)

2σ2
(1− 1

τ
)dβ(y)

=

∫

Rd
e
− g(y)

γ dβ(y)

And similarly: π(Rd × Rd) =
∫
Rd e

− f(x)
γ dα(x). Plugging this in the dual objective (4.57),

we get

γ

∫

Rd
(1− e−

f
γ )dα+ γ

∫

Rd
(1− e−

g
γ )dβ − 2σ2

∫∫

Rd×Rd

(e
−‖x−y‖2+f(x)+g(y)

2σ2 − 1)dα(x)dβ(y)

= γ(mα −mπ) + γ(mβ −mπ)− 2σ2(mπ −mαmβ),

which yields the desired expression.

Unbalanced OT for scaled Gaussians. Let α and β be unnormalized Gaussian mea-
sures. Formally, α = mαN (a,A) and β = mβN (b,B) with mα,mβ > 0. Unlike for
balanced OT, α and β cannot be assumed to be centered without loss of generality. How-
ever, we can still derive a closed form formula for UOTσ(α, β) by considering quadratic
potentials of the form

f(x)

2σ2
= −1

2
(x>Ux− 2x>u) + log(mu) and

g(x)

2σ2
= −1

2
(x>Vx− 2x>v) + log(mv).

(4.61)

Let σ and γ be the regularization parameters as in (4.56), and τ def
= γ

2σ2+γ
, λ def

= σ2

1−τ = σ2+ γ
2 .

Let us define the following useful quantities:

µ =

(
a + AX−1(b− a)
b + BX−1(a− b)

)
(4.62)

H =

(
(Id + 1

λC)(A−AX−1A) C + (Id + 1
λC)AX−1B

C> + (Id + 1
λC>)BX−1A (Id + 1

λC>)(B−BX−1B)

)
(4.63)

mπ = σ
dσ2

γ+σ2


mαmβ det(C)

√
det(ÃB̃)τ

det(AB)




1
τ+1

e
−
‖a−b‖2

X−1
2(τ+1)

√
det(C− 2

γ ÃB̃)
, (4.64)

with

X = A + B + λId, Ã =
γ

2
(Id − λ(A + λId)−1),

B̃ =
γ

2
(Id − λ(B + λId)−1), C =

(
1

τ
ÃB̃ +

σ4

4
Id

) 1
2

− σ2

2
Id.

Theorem 4.14. Let α = mαN (a,A) and β = mβN (b,B) be two unnormalized Gaussian
measures. Let τ = γ

2σ2+γ
and λ = σ2

1−τ = σ2 + γ
2 and µ, H, and mπ be as above. Then
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(i) The unbalanced optimal transport plan, minimizer of (4.55), is also an unnormalized
Gaussian over Rd × Rd given by π = mπN (µ,H),

(ii) UOTσ can be obtained in closed form using Proposition 4.13 with π(Rd × Rd) = mπ.

As in the balanced setting, the proof of Theorem 4.14 relies on proving the contractivity
and stability of generalized Sinkhorn iterations [Chizat, 2017, Peyré et al., 2019] w.r.t.
quadratic potentials. As it is quite long and at times technical, we defer it to Section 6.2.

Remark 4.15. The exponential term in the closed-form formula above provides some
intuition on how transportation occurs in unbalanced OT. When the difference between
the means is too large, the transported mass m?

π goes to 0 and thus no transport occurs.
However for fixed means a,b, when γ → +∞, we have X−1 → 0 and the exponential term
approaches 1.

5 Numerical Experiments

5.1 Empirical validation of the closed-form formulas

Figure 4.1 illustrates the convergence towards the closed form formulas of both theorems.
For each dimension d in [5, 10], we select a pair of Gaussian measuress α ∼ N (a,A)
and β ∼ mβN (b,B) where mβ equals 1 (resp. 2) in the balanced (resp. unbalanced)
setting, and randomly generated means a,b uniformly in [−1, 1]d and covariance matrices
A,B ∈ Sd++ following the Wishart distribution Wd(0.2 ∗ Id, d). We generate empirical
distributions αn and βn with n i.i.d. samples from N (a,A) and N (b,B) respectively
(with total masses 1 and mβ) and compute OTσ / UOTσ. We report means and ± shaded
standard-deviation areas over 20 independent trials for each value of n.
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Figure 4.1: Numerical convergence of discrete OT between empirical distributions,
OTσ(αn, βn) and UOTσ(αn, βn), towards the closed form of OTσ(α, β) and UOTσ(α, β)
(dashed) given by Theorem 4.2 and Theorem 4.14 for random Gaussians α, β. For unbal-
anced OT, γ = 1.

5.2 Transport plan visualization with d = 1

Figure 4.2 confronts the expected theoretical plans (contours in black) given by Theorems 4.2
and 4.14 to empirical ones (weights in shades of red) obtained with Sinkhorn’s algorithm
using 2000 Gaussian samples. The density functions (black) and the empirical histograms
(red) of α (resp. β) with 200 bins are displayed on the left (resp. top) of each transport
plan. The red weights are computed via a 2d histogram of the transport plan returned by
Sinkhorn’s algorithm with (200 x 200) bins. Notice the blurring effect of ε and increased
mass transportation of the Gaussian tails in unbalanced transport with larger γ.
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Balanced | ε= 0.02 Balanced | ε= 0.1 Unbalanced | γ= 0.001 | ε= 0.1 Unbalanced | γ= 0.25 | ε= 0.1

Figure 4.2: Effect of ε in balanced OT and γ in unbalanced OT. Empirical plans (red)
correspond to the expected Gaussian contours depicted in black. Here α = N (0, 0.04) and
β = mβN (0.5, 0.09) with mβ = 1 (balanced) and mβ = 2 (unbalanced). In unbalanced OT,
the right tail of β is not transported, and the mean of the transportation plan is shifted
compared to that of the balanced case – as expected from Theorem 4.14 specially for low γ.
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Figure 4.3: Bures, Sinkhorn-Bures, and Euclidean geodesics. Sinkhorn-Bures trajectories
converge to Bures geodesics as σ goes to 0, and to Euclidean geodesics as σ goes to infinity.

5.3 Effects of regularization strength

We provide numerical experiments in Figures 4.4 and 4.5 to illustrate the behaviour of
transportation plans and corresponding distances as σ goes to 0 or to infinity. As can be seen
from (4.14), when σ → 0 we recover the Wasserstein-Bures distance (4.3), and the optimal
transportation plan converges to the Monge map (4.5). When on the contrary σ → ∞,
Sinkhorn divergences Sε(α, β)

def
= OTε(α, β)− 1

2(OTε(α, α) + OTε(β, β)) convergence to
MMD with a −c kernel (where c is the optimal transport ground cost) [Genevay et al.,
2018]. With a −`2 kernel, MMD is degenerate and equals 0 for centered measures.
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Figure 4.4: Numerical convergence of Bσ2(A,B)− 1
2(Bσ2(A,A) +Bσ2(B,B)) to B(A,B)

as σ goes to 0 and to 0 as σ goes to infinity.

5.4 The Newton-Schulz algorithm

The main bottleneck in computing TAB is that of computing matrix square roots. This
can be performed using singular value decomposition (SVD) or, as suggested in [Muzellec
and Cuturi, 2018], using Newton-Schulz (NS) iterations [Higham, 2008, §5.3]. In particular,
Newton-Schulz iterations have the advantage of yielding both roots, and inverse roots.
Hence, to compute TAB, one would run NS a first time to obtain A1/2 and A−1/2, and a
second time to get (A1/2BA1/2)1/2 (c.f. Chapter 2).

In fact, as a direct application of [Higham, 2008, Theorem 5.2], one can even compute
both TAB and TBA =

(
TAB

)−1 in a single run by initializing the Newton-Schulz algorithm
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2 =  0.01 2 =  0.1 2 =  0.5 2 =  1.0 2 =  10

Figure 4.5: Effect of regularization on transportation plans. When σ goes to 0 (left), the
transportation plan concentrates on the graph of the linear Monge map. When σ goes to
infinity (right), the transportation plan converges to the independent coupling.

Algorithm 4 NS Monge Iterations
Input: PSD matrix A,B, ε > 0

Y ← B
(1+ε)‖B‖ ,Z← A

(1+ε)‖A‖
while not converged do

T← (3I− ZY)/2
Y ← YT
Z← TZ

end while
Y ←

√
‖B‖
‖A‖Y, Z←

√
‖A‖
‖B‖Z

Output: Y = TAB, Z = TBA

with A and B, as in Algorithm 4. Using (4.6), and noting that B(A,B) = TrA +
TrB− 2Tr(TABA), this implies that a single run of NS is sufficient to compute B(A,B),
∇AB(A,B) and ∇BB(A,B) using basic matrix operations. The main advantage of
Newton-Schultz over SVD is that it its efficient scalability on GPUs, as illustrated in
Figure 4.6.

Newton-Schulz iterations are quadratically convergent under the condition

‖Id −
(
A 0
0 B

)2 ‖ < 1,

as shown in [Higham, 2008, Theorem 5.8]. To meet this condition, it is sufficient to rescale A
and B so that their norms equal (1 + ε)−1 for some ε > 0, as in the first step of Algorithm 4
(which can be skipped if ‖A‖ < 1 (resp. ‖B‖ < 1)). Finally, the output of the iterations
are scaled back, using the homogeneity (resp. inverse homogoneity) of eq. (4.5) w.r.t. A
(resp. B).

A rough theoretical analysis shows that both Newton-Schulz and SVD have a O(d3)
complexity in the dimension. Figure 4.6 compares the running times of Newton-Schulz

iterations and SVD on CPU or GPU used to compute both A
1
2 and A−

1
2 . We simulate a

batch of positive definite matrices A following the Wishart distribution W (Idd, d) to which
we add 0.1Id to avoid numerical issues when computing inverse square roots. We display
the average run-time of 50 different trials along with its ± std interval. Notice the different
magnitudes between CPUs and GPUs. As a termination criterion, we first run EVD to
obtain A

1/2
evd and A

−1/2
evd and stop the Newton-Schultz algorithm when its n-th running

estimate A
1/2
n verifies: ‖A1/2

n −A
1/2
evd‖1 ≤ 10−4. Notice the different order of magnitude

between CPUs and GPUs. Moreover, the computational advantage of Newton-Schultz on
GPUs can be further increased when computing multiple square roots in parallel.



108 CHAPTER 4. ENT-OT BETWEEN (UNBALANCED) GAUSSIAN MEASURES

0 500 1000 1500 2000
dimension d

0

2

4

6

8

10

12

14
Ti

m
e 

(s
)

CPU

0 500 1000 1500 2000
dimension d

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m

e 
(s

)

GPUNewton-Schultz EVD

Figure 4.6: Average run-time of Newton-Schulz and EVD to compute on CPUs and GPUs.

Conclusion

In this chapter we have provided – to the best of our knowledge – the first nontrivial
closed form expressions of entropy-regularized optimal transport for both balanced and
unbalanced measures. While our contributions are mostly theoretical and would certainly
promote new theoretical findings in entropic OT, the entropy-regularized Bures-Wasserstein
distance obtained here is better suited for real data applications where covariance matrices
are prone to be ill-conditioned.
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6 Appendix: Technical Lemmas and Proof of Theorem 4.14

6.1 Proofs of technical lemmas

We provide in this appendix the statement of the lemmas used in this chapter along with
their proofs.

Lemma 4.16. [Sum of factorized quadratic forms] Let A,B ∈ Sd such that A 6= B and
a,b ∈ Rd. Denote α = (A,a) and β = (B,b). Let Pα(x) = −1

2(x − a)>A(x − a) and
Pβ(x) = −1

2(x− b)>B(x− b). Then

Pα(x) + Pβ(x) = −1

2

(
(x− c)>C(x− c) + qα,β

)
, (4.65)

where




C = A + B
(A + B)c = (Aa + Bb)
qα,β = a>Aa + b>Bb− c>Cc.

(4.66)

In particular, if C = A + B is invertible, then
{

c = C−1(Aa + Bb)
c>Cc = (Aa + Bb)>C−1(Aa + Bb).

(4.67)

Proof. On the one hand, we have

Pα(x) + Pβ(x) = −1

2

(
(x− a)>A(x− a) + (x− b)>B(x− b)

)

= −1

2

(
x>(A + B)x− 2x>(Aa + Bb) + a>Aa + b>Bb

)
.

On the other hand, for an arbitrary γ = (c,C) and q ∈ R, we have

Pγ(x)− q

2
= −1

2

(
(x− c)>C(x−C) + q

)

= −1

2

(
x>Cx− 2x>Cc + c>Cc + q

)
.

If A 6= B, identification of the parameters of both quadratic forms leads to (4.66).

Lemma 4.17. [Gaussian convolution of factorized quadratic forms] Let A ∈ Sd, a ∈ Rd
and σ > 0 such that σ2A+Id � 0. Let Qα(x) = −1

2(x−a)>A(x−a). Then the convolution

of eQα by the Gaussian kernel N
(

0, Id
σ2

)
is given by

N
(

0,
Id

σ2

)
? exp (Qα)

def
=

∫

Rd

1

(2πσ2)
n
2

exp

(
− 1

2σ2
‖.− y‖2 +Qα(y)

)
dy

= cα exp(Q(a,J)),

(4.68)

where

J = (σ2A + Id)−1A

cα =
1√

det(σ2A + Id)
.
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Proof. Using Lemma 4.16 one can write for any fixed x ∈ Rd

− 1

2σ2
‖x− y‖2 +Qα(y) = Q(x,

Id

σ2
)(y) +Q(a,A)(y)

= Q(Aa +
x

σ2
,A +

Id

σ2
)(y) + h(x),

with h(x) = −1
2

(
a>Aa + 1

σ2 ‖x‖2 − 1
σ2 (σ2Aa + x)>(σ2A + Id)−1(σ2Aa + x)

)
. Therefore,

the convolution integral is finite if and only if A + Id
σ2 � 0, in which case we get the integral

of a Gaussian density:

1

(2πσ2)
n
2

∫

Rd
exp

(
Q(Aa +

x

σ2
,A +

Id

σ2
)(y) + h(x)

)
d(y) =

√
det(2π(A + Id

σ2 )−1)

(2πσ2)n
eh(x)

=
eh(x)

√
det(σ2A + Id)

For the sake of clarity, let’s separate the terms of h depending on their order in x:
h(x) = −1

2 (h2(x) + h1(x) + h0) where

h2(x) =
1

σ2
(‖x‖2 − x>(σ2A + Id)−1x

h1(x) = −2x>(σ2A + Id)−1Aa

h0 = aAa− σ2a>A(σ2A + Id)−1Aa.

Finally, we can factorize h2 and h0 using Woodbury’s matrix identity which holds even for
a singular matrix A:

(σ2A + Id)−1 = Id − σ2(σ2A + Id)−1A. (4.69)

Let J = (σ2A + Id)−1A. Then,

h2(x) =
1

σ2
(‖x‖2 − x>(Id − σ2(σ2A + Id)−1A)x

= x>(σ2A + Id)−1Ax

= x>Jx,

h1(x) = −2x>Ja,

h0 = aAa− σ2a>A(σ2A + Id)−1Aa

= a>A(Id − σ2(σ2A + Id)−1A)a

= a>A(σ2A + Id)−1a

= a>(σ2A + Id)−1Aa

= a>Ja.

Therefore, h(x) = −1
2

(
x>Jx− 2x>Ja + a>Ja

)
= −1

2(x− a)>J(x− a) = Q(a,J)(x).

Lemma 4.18. [Gaussian convolution of generic quadratic forms] Let A ∈ Sd and a ∈ Rd
and σ > 0 such that σ2A + Id � 0. Let Qα(x) = −1

2(x>Ax− 2x>a). Then the convolution

of eQα by the Gaussian kernel N
(

0, Id
σ2

)
is given by:

N
(

0,
Id

σ2

)
? exp (Qα)

def
=

∫

Rd

1

(2πσ2)
n
2

exp

(
− 1

2σ2
‖.− y‖2 +Qα(y)

)
dy

= cα exp(Q(Ga,GA)),

(4.70)
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where

G = (σ2A + Id)−1

cα =
e
σ2a>Ga

2√
det(σ2A + Id)

.

Proof. Using Lemma 4.16 one can write for any fixed x ∈ Rd, we have

− 1

2σ2
‖x− y‖2 +Qα(y) = Q(x,

Id

σ2
)(y) +Q(a,A)(y)

= Q(a +
x

σ2
,A +

Id

σ2
)(y)− 1

2σ2
‖x‖2

= Qf((σa +
x

σ2
,A +

Id

σ2
)(y) + h(x),

with h(x) = −1
2

(
1
σ2 ‖x‖2 − 1

σ2 (σ2a + x)>(σ2A + Id)−1(σ2a + x)
)
. Therefore, the convolu-

tion integral is finite if and only if A + Id
σ2 � 0, in which case we get the integral of a

Gaussian density:

1

(2πσ2)
n
2

∫

Rd
exp

(
Qf(a +

x

σ2
,A +

Id

σ2
)(y) + h(x)

)
d(y) =

√
det(2π(A + Id

σ2 )−1)

(2πσ2)n
eh(x)

=
eh(x)

√
det(σ2A + Id)

For the sake of clarity, let’s separate the terms of h depending on their order in x:
h(x) = −1

2 (h2(x) + h1(x) + h0) where:

h2(x) =
1

σ2
(‖x‖2 − x>(σ2A + Id)−1x

h1(x) = −2x>(σ2A + Id)−1a

h0 = −σ2a>(σ2A + Id)−1a

Finally, we can factorize h2 and h0 using Woodbury’s matrix identity (4.69) which holds
even for a singular matrix A. Let G = (σ2A + Id)−1, then

h2(x) =
1

σ2
(‖x‖2 − x>(Id − σ2(σ2A + Id)−1A)x

= x>(σ2A + Id)−1Ax

= x>GAx,

h1(x) = −2x>Ga,

h0 = −σ2a>(σ2A + Id)−1a

= −σ2a>Ga.

Therefore, h(x) = −1
2

(
x>GAx− 2x>Ga− σ2a>Ga

)
= Q(Ga,GA)(x) + σ2a>Ga

2 .

6.2 Proof of Theorem 4.14

In the balanced case, we showed that Sinkhorn’s transform is stable for quadratic potentials
and that the resulting sequence is a contraction. Similarly, the following proposition shows
that the unbalanced Sinkhorn transform is stable for quadratic potentials.
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Proposition 4.19. Let α be an unnormalized Gaussian measure given by mαN (a,A). Let
τ = γ

2σ2+γ
. Define the unbalanced Sinkhorn transform T : RRd → RRd :

Tα(h)(x)
def
= −τ log

∫

Rd
e
−‖x−y‖2

2σ2 +h(y)dα(y) (4.71)

Let U ∈ Sd, u ∈ Rd and mu > 0. If h = log(mu)+Q(u,U) i.e h(x) = log(mu)− 1
2(x>Ux−

2x>u), then Tα(h) is well defined if and only if F
def
= σ2U + σ2A−1 + Id � 0, in which case

Tα(h) = Q(v,V) + log(mv) with the following parameters:

V = τ
1

σ2
(F−1 − Id) (4.72)

v = −τF−1(A−1a + u) (4.73)

mv =

(√
det(A) det(F)

mumαe
qu,α
2 σ2d

)τ
, (4.74)

where qu,α = σ2

τ2
v>Fv − a>A−1a.

Proof. The exponent inside the integral can be written as

e
−‖x−y‖2

2σ2 +h(y)dα(y) ∝ e
−‖x−y‖2

2σ2 − 1
2

(y>Xy−y>A−1y)dy

∝ e−
1
2 (y>(

Id
σ2

+X+A−1)y)+x>y
σ2 dy,

which is integrable if and only if U + A−1 + 1
σ2 Id � 0 ⇔ F � 0. Moreover, up to a

multiplicative factor, the exponentiated Sinkhorn transform is equivalent to a Gaussian
convolution of an exponentiated quadratic form. Lemma 4.18 applies:

e−Tα(h) =

∫

Rd
e
−‖x−y‖2

2σ2 +f(y)dα(y)

= mumα
exp(−1

2a>A−1a)√
det(2πA)

∫

Rd
e
−‖x−y‖2

2σ2 +Q(u,U)(y)+Q(A−1a,A−1)(y)dy

= mumα
exp(−1

2a>A−1a)√
det(2πA)

√
(2πσ2)2d exp

(
N (σ2Id)

)
? exp

(
Q(u + A−1a,U + A−1)

)

= mumα
σ2d exp(−1

2a>A−1a)√
det(A)

exp
(
N (σ2Id)

)
? exp

(
Q(u + A−1a,U + A−1)

)

= mumα
σ2d exp(−1

2a>A−1a)√
det(A)

cα exp
(
Q(F−1(u + A1a),F−1(U + A−1)

)

= mumα
σ2d exp(−1

2a>A−1a)√
det(A)

cα exp

(
Q(F−1(u + A1a),

1

σ2
F−1(F− Id)

)

= mumα
σ2d exp(−1

2a>A−1a)√
det(A)

cα exp

(
Q(F−1(u + A1a),

1

σ2
(Id − F−1)

)
,

where cα =
exp( 1

2
σ2(u+A−1a)>F−1(u+A−1a))√

det(F)
.

Therefore, by applying −τ log we can identify V and v. Substituting u + A−1a by
− 1
τFv leads to the expression of mv.

Unlike in the balanced case, the unbalanced Sinkhorn iterations require 2 more parame-
ters (v and mv) with tangled updates. Proving the convergence of the resulting algorithm
is more challenging. Instead, we directly solve the optimality conditions and show that a
pair of quadratic potentials verifies (4.58).
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Proposition 4.20. The pair of quadratic forms (f, g) of (4.61) verifies the optimality
conditions (4.58) if and only if

F
def
= σ2A−1 + σ2U + Id � 0

G
def
= σ2B−1 + σ2V + Id � 0,

(4.75)

mv

(
mumαe

qu,α
2 σd√

det(A) det(F)

)τ
= 1

v = −τF−1(A−1a + u)

G = τF−1 + σ2B−1 + (1− τ)Id

qu,α =
σ2

τ2
v>Fv − a>A−1a

mu

(
mvmβe

qv,β
2 σd√

det(B) det(G)

)τ
= 1

u = −τG−1(B−1b + v)

F = τG−1 + σ2A−1 + (1− τ)Id

qv,β =
σ2

τ2
u>Gu− b>B−1b

(4.76)

Proof. The equations on mu,mv,u,v follow immediately from Proposition 4.19. Using the
definition of F and G and substituting U and V leads to the equations in F and G.

We now turn to solve the system (4.76). Notice that in general, the dual potentials can
only be identified up to a an additive constant. Indeed, if a pair (f, g) is optimal, then
(f +K, g −K) is also optimal for any K ∈ R (the transportation plan and dual objective
do not change). Thus, at optimality, it is sufficient to obtain the product mumv. We start
by identifying (F,G) then (u,v) and finally mumv.

Identifying F and G. The equations in F and G can be shown to be equivalent to
those of the balanced case up to a change of variables. Let λ = 1−τ

σ2 . Then,
{

F = τG−1 + σ2A−1 + (1− τ)Id

G = τF−1 + σ2B−1 + (1− τ)Id

⇔
{

F =
(
G
τ

)−1
+ σ2

τ τ(A−1 + 1
λId)

G
τ = F−1 + σ2

τ (B−1 + 1
λId)

⇔
{

F = G̃−1 + σ2( Ãτ )−1

G̃ = F−1 + σ2B̃−1,

which correspond to the balanced OT fixed point equations (4.21) associated with the pair
( Ãτ , B̃) with the following change of variables:

G̃
def
=

G

τ
(4.77)

Ã
def
= τ(A−1 +

1

λ
Id)−1 (4.78)

B̃
def
= τ(B−1 +

1

λ
Id)−1. (4.79)

Notice that since 0 < τ < 1, Ã and B̃ are well-defined and positive-definite. Therefore,
Proposition 4.6 applies and we obtain the closed form

C
def
= ÃG̃−1 =

(
1

τ
ÃB̃ +

σ4

4
Id

) 1
2

− σ2

2
Id

= Ã
1
2

(
1

τ
Ã

1
2 B̃Ã

1
2 +

σ4

4
Id

) 1
2

Ã−
1
2 − σ2

2
Id.

(4.80)
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Similarly, by symmetry:

B̃F−1 =

(
1

τ
B̃Ã +

σ4

4
Id

) 1
2

− σ2

2
Id = C>. (4.81)

Therefore we obtain F and G in closed form:

F = B̃C−1 (4.82)

G = C−1Ã. (4.83)

Finally, to obtain the formulas of Ã and B̃ of Theorem 4.14, we use Woodburry’s identity
to write

B̃ = τλ(Id − λ(B + λId)−1)

=
γ

γ + 2σ2

2σ2 + γ

2
(Id − λ(B + λId)−1)

=
γ

2
(Id − λ(B + λId)−1).

The same derivation applies for Ã.

Identifying u and v. Combining the equations in u and v leads to

v = −τF−1(A−1a + τu)

⇔ Fv = −τA−1a− τu
⇔ Fv = −τA−1a + τ2G−1(B−1b + v)

⇔ GFv = −τGA−1a + τ2(B−1b + v)

⇔ (GF− τ2Id)v = −τGA−1a + τ2B−1b.

Similarly, (FG− τ2Id)u = −τFB−1b + τ2A−1a. Moreover, since 0 < τ < 1, it holds that

(F− τ2G−1) � (F− τG−1)

= σ2Ã−1 � 0.

Therefore, (FG− τ2Id) = (F− τ2G−1Id)G is invertible. The same applies for (GF− τ2Id).
Finally, both equations can be vectorized:

(
GF− τ2Id 0

0 FG− τ2Id

)(
v
u

)
=

(
−τG τ2Id

τ2Id −τF

)(
A−1 0

0 B−1

)(
a
b

)
(4.84)

Identifying mumv. Now that F,G,u and v are given in closed form, mumv is obtained
by taking the product of both equations:

(mumv)
τ+1 =

(√
det(AB) det(FG)

σ2dmαmβ

)τ
exp(−τ

2
(qu,α + qv,β)). (4.85)
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Transportation plan. Let ω def
=

mαmβ√
det(4π2AB)

mumve
− 1

2
(a>A−1a+b>B−1b). At optimality,

the transport plan π is given by

dπ

dxdy
(x, y) = exp

(
f(x) + g(y)− ‖x− y‖2

2σ2

)
dα

dx
(x)

dβ

dy
(y)

= ω exp

(
Q(A−1a + u,A−1 + U)(x)− ‖x− y‖

2

2σ2
+Q(B−1b + v,B−1 + V)(y)

)

= ω exp

(
Q(U + A−1)(x) +Q(V + B−1)(y) +Q(

Id
σ2
− Id
σ2

− Id
σ2

Id
σ2

)(x, y)

)

= ω exp

(
Q
((

A−1a + u
B−1b + v

)
,

(
U + A−1 + Id

σ2 0

0 V + B−1 + Id
σ2

))
(x, y)

)

= ω exp

(
Q
((

A−1a + u
B−1b + v

)
,

1

σ2

(
F −Id

−Id G

))
(x, y)

)

= ω exp (Q(µ,Γ)(x, y)) ,

with µ def
=

(
A−1a + u
B−1b + v

)
and Γ

def
=

(
F
σ2 − Id

σ2

− Id
σ2

G
σ2

)
. Let us show that Γ is positive definite.

Since G
2σ2 � 0 , it is sufficient to show that Schur complement F

σ2 − 1
σ2 G−1 is positive

definite. First, we have

F−G−1

σ2
= τÃ−1 − 1

λ
G−1.

Next, it holds that Ã ≺ τλId and B̃ ≺ τλId. Thus, for any x ∈ Rd we have

x>
Ã

1
2 B̃Ã

1
2

τ
x ≤ λ‖Ã

1
2x‖2 = λx>Ãx ≤ τλ2‖x‖2,

which implies


Ã

1
2 B̃Ã

1
2

τ
+
σ4

4
Id




1
2

≺
√
τλ2 +

σ4

4
Id =

λ

2
(
√

4τ + (1− τ)2)Id =
λ(1 + τ)

2
Id.

Therefore, using the second equality of (4.80) and inverting (4.82) to obtain G−1:

x>G−1x = x>Ã−
1
2





Ã

1
2 B̃Ã

1
2

τ
+
σ4

4
Id




1
2

− σ2

2
Id)


 Ã−

1
2x

= (Ã−
1
2x)>





Ã

1
2 B̃Ã

1
2

τ
+
σ4

4
Id




1
2

− λ(1− τ)

2
Id)


 (Ã−

1
2x)

≤ (Ã−
1
2x)>

(
λ(1 + τ)

2
Id −

λ(1− τ)

2
Id)

)
(Ã−

1
2x)

= τλx>Ã−1x.

Hence G−1 ≺ τλÃ−1. We can therefore conclude that the Schur complement 1
σ2 (F−G−1)

is positive definite. By completing the square, we can factor dπ
dxdx as a Gaussian density.
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Let z def
= ( xy ). Then,

dπ

dxdy
(x, y) = ω exp (Q(µ,Γ)(x, y))

= ω exp

(
−1

2
(z>Γz − 2z>µ)

)

= ω exp

(
1

2
µ>Γ−1µ− 1

2
(z − Γ−1µ)>Γ(z − Γ−1µ))

)

= ωe
1
2
µ>Γ−1µN (Hµ,H)(z),

where H = Γ−1.

Detailed expressions. To conclude the proof of Theorem 4.14, we need to simplify the
formulas of m,Hµ and H. Let us start with the mean Hµ.

Hµ: Using the optimality conditions of Proposition 4.20 and the closed form formula of v
and u, we get

µ =

(
A−1a + u
B−1b + v

)

= −1

τ

(
Fv
Gu

)

= −1

τ

(
F 0
0 G

)(
v
u

)

= −1

τ

(
F 0
0 G

)(
GF− τ2Id 0

0 FG− τ2Id

)−1(−τG τ2Id

τ2Id −τF

)(
A−1 0

0 B−1

)(
a
b

)

=

(
F 0
0 G

)(
GF− τ2Id 0

0 FG− τ2Id

)−1(
G −τId

−τId F

)(
A−1 0

0 B−1

)(
a
b

)

=

(
F 0
0 G

)(
(F− τ2G−1)−1 −τ(GF− τ2Id)−1

−τ(FG− τ2Id)−1 (G− τ2F−1)−1

)(
A−1 0

0 B−1

)(
a
b

)

=

(
F 0
0 G

)(
F τId

τId G

)−1(
A−1 0

0 B−1

)(
a
b

)

=

(
Id τG−1

τF−1 Id

)−1(
A−1 0

0 B−1

)(
a
b

)
.

(4.86)

Therefore,

Hµ = σ2

(
F −Id

−Id G

)−1(
Id τG−1Id

τF−1Id Id

)−1(
A−1 0

0 B−1

)(
a
b

)

= σ2

((
Id τG−1Id

τF−1Id Id

)(
F −Id

−Id G

))−1(
A−1 0

0 B−1

)(
a
b

)

= σ2

(
F− τG−1 −(1− τ)Id

−(1− τ)Id G− τF−1

)−1(
A−1 0

0 B−1

)(
a
b

)

= σ2

(
σ2A−1 + (1− τ)Id −(1− τ)Id

−(1− τ)Id σ2B−1 + (1− τ)Id

)−1(
A−1 0

0 B−1

)(
a
b

)

=

(
A−1 + Id −λId

−λId B−1 + λId

)−1(
A−1 0

0 B−1

)(
a
b

)
.

(4.87)
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Let us now compute the inverse of

Z
def
=

(
A−1 + 1

λId − 1
λId

− 1
λId B−1 + 1

λId

)
. (4.88)

Let S and S′ be the respective Schur complements of A−1 + 1
λId and B−1 + 1

λId in Z. The
block inverse formula yields

Z−1 =

(
S 1

λS(B−1 + 1
λId)−1

1
λ(A−1 + 1

λId)−1S S′

)
.

Using Woodbury’s identity twice and denoting X
def
= A + B + λId, we get

S = (A−1 +
1

λ
Id −

1

λ2
(B−1 +

1

λ
Id)−1)−1

= (A−1 + (B + λId)−1)−1

= (A−A(A + B + λId)−1A)

= A−AX−1A,

and similarly: S′ = B−BX−1B. The off-diagonal blocks can be simplified as well:

1

λ
S(B−1 +

1

λ
Id)−1 =

1

λ
(A−1 + (B + λId)−1)−1(B−1 +

1

λ
Id)−1

= (A−1 + (B + λId)−1)−1(λId + BId)−1B

=
(
(B + λId)− (B + λId)(A + B + λId)−1(B + λId)

)
(λId + BId)−1B

= B− (B + λId)X−1B

= B− (X−A)X−1B

= AX−1B.

Similarly, 1
λ(A−1 + 1

λId)−1S = BX−1A. Thus, the inverse of Z is given by

Z−1 =

(
A−AX−1A AX−1B

BX−1A B−BX−1B

)
, (4.89)

and finally:

Hµ = Z−1

(
A−1 0

0 B−1

)(
a
b

)
=

(
Id −AX−1 AX−1

BX−1 Id −BX−1

)(
a
b

)

=

(
a + AX−1(b− a)
b + BX−1(a− b)

)
.

Finding the covariance matrix H: To compute H =

(
1
σ2

(
F −Id

−Id G

))−1

one may

use the block inverse formula. However, the Schur complement (F−G−1)−1 is not easy to
manipulate. Instead notice that the following holds:

1

σ2

(
F −Id

−Id G

)(
Id τF−1

τG−1 Id

)
=

1

σ2

(
F− τG−1 −(1− τ)Id

−(1− τ)Id G− τF−1

)

=

(
A−1 + 1

λId − 1
λId

− 1
λId B−1 + 1

λId

)
,
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where the last equality follows from the optimality conditions (4.76). Therefore,

H =

(
Id τF−1

τG−1 Id

)(
A−1 + 1

λId − 1
λId

− 1
λId B−1 + 1

λId

)−1

.

Notice that we have already computed the inverse matrix on the right side above in the
developments of Hµ. Thus,

H =

(
Id τF−1

τG−1 Id

)(
A−AX−1A AX−1B

BX−1A B−BX−1B

)

=

(
Id τCB̃−1

C>Ã−1 Id

)(
A−AX−1A AX−1B

BX−1A B−BX−1B

)

=

(
Id C(B−1 + 1

λId)
C>(A−1 + 1

λId) Id

)(
A−AX−1A AX−1B

BX−1A B−BX−1B

)

=

(
Id C(B−1 + 1

λId)
C>(A−1 + 1

λId) Id

)(
A−AX−1A AX−1B

BX−1A B−BX−1B

)

=

(
Id

1
λC(λId + B)B−1

1
λC>C(λId + A)A−1 Id

)(
A−AX−1A AX−1B

BX−1A B−BX−1B

)

=

(
Id

1
λC(X−A)B−1

1
λC>(X−B)A−1 Id

)(
A−AX−1A AX−1B

BX−1A B−BX−1B

)

=

(
A−AX−1A + 1

λC(A−AX−1A) AX−1B + 1
λC(X−A)(Id −X−1B)

1
λC>(X−B)(Id −X−1A) + BX−1A 1

λC>(X−B)X−1B + B−BX−1B

)

=

(
(Id + 1

λC)(A−AX−1A) AX−1B + 1
λC(X−A−B + AX−1B)

λC>(λId + BX−1A) + BX−1A 1
λC>(X−B)X−1B + B−BX−1B

)

=

(
(Id + 1

λC)(A−AX−1A) AX−1B + 1
λC(λId + AX−1B)

C> + 1
λC>BX−1A + BX−1A (Id + 1

λC>)(B−BX−1B)

)

=

(
(Id + 1

λC)(A−AX−1A) C + (Id + 1
λC)AX−1B

C> + (Id + 1
λC>)BX−1A (Id + 1

λC>)(B−BX−1B)

)
.

Finding the mass of the plan π: The optimal transport plan is given by

dπ

dxdy
(x, y) = ωe

1
2
µ>Γ−1µ

√
det(2πH)N (Hµ,H)(z), (4.90)

where

ω =
mαmβ√

det(4π2AB)
mumve

− 1
2

(a>A−1a+b>B−1b)

=
mαmβ√

det(4π2AB)

(√
det(AB) det(FG)

σ2dmαmβ

) τ
τ+1

e
− τ

2(τ+1)
(qu,α+qv,β)

e−
1
2

(a>A−1a+b>B−1b)

=
1

(2π)d

(
mαmβ√
det(AB)

) 1
τ+1
(√

det(FG)

σ2d

) τ
τ+1

e
− τ

2(τ+1)
(qu,α+qv,β)

e−
1
2

(a>A−1a+b>B−1b).

First, let us simplify the argument of the exponential terms. Isolating the terms that
depend only on the input means a,b it holds that

qu,α + qv,β =
σ2

τ2
(v>Fv + u>Gu) + a>A−1a + b>B−1b.

Therefore, the full exponential argument is given by

φ
def
= µ>Γ−1µ− τ

τ + 1

σ2

τ2
(v>Fv + u>Gu)− 1

τ + 1
(a>A−1a + b>B−1b). (4.91)



6. APPENDIX: TECHNICAL LEMMAS AND PROOF OF THEOREM 4.14 119

First, using (4.87) we may replace µ with its expression:

µ>Γ−1µ = µ>Hµ

= σ2

(
A−1a
B−1b

)>(
Id τF−1

τG−1 Id

)−1(
F −Id

−Id G

)−1(
Id τG−1

τF−1 Id

)−1(
A−1a
B−1b

)
.

Next, we have

σ2

τ2
(v>Fv + u>Gu) = σ2((A−1a + u)>F−1(A−1a + u) + (B−1b + v)>G−1(B−1b + v))

= σ2µ>
(

F−1 0
0 G−1

)
µ

= σ2

(
A−1a
B−1b

)>(
Id τF−1

τG−1 Id

)−1(
F−1 0

0 G−1

)(
Id τG−1

τF−1 Id

)−1(
A−1a
B−1b

)
.

Let J =

(
Id τG−1

τF−1 Id

)
and K =

(
F 0
0 G

)
. It holds that

µ>Γ−1µ− τ

τ + 1

σ2

τ2
(v>Fv + u>Gu) =

(
A−1a
B−1b

)>
J>
−1

(H− σ2τ

τ + 1
K−1)J−1

(
A−1a
B−1b

)
.

Let us compute the matrix J>
−1

(H − τσ2

τ+1K−1)J−1. First keep in mind that JK =(
F τId

τId G

)
. Now, using Woodburry’s identity:

(
J>
−1

(H− τ

τ + 1
K−1)J−1

)−1

= J(H− τσ2

τ + 1
K−1)−1J>

= J

(
−τ + 1

τσ2
K−

(
τ + 1

τσ2

)2

K(H−1 − τ + 1

τσ2
K)−1K

)
J>

=
τ + 1

τσ2

(
−JKJ> − τ + 1

τσ2
JK(

(
− F
τσ2 − 1

σ2 Id

− 1
σ2 Id − G

τσ2

)−1

(JK>)>

)

=
τ + 1

τσ2

(
−JKJ> + (τ + 1)JK(

(
F τId

τId G

)−1

(JK>)>

)

=
τ + 1

τσ2

(
−
(

F τId

τId G

)(
Id τF−1

τG−1 Id

)
+ (τ + 1)

(
F τId

τId G

))

=
τ + 1

τσ2

(
−F− τ2G−1 + (τ + 1)F (−2τ + τ(τ + 1))Id

(−2τ + τ(τ + 1))Id −G− τ2F−1 + (τ + 1)G

)

=
τ + 1

σ2

(
F− τG−1 −(1− τ)Id

−(1− τ)Id G− τF−1

)

= (τ + 1)

(
A−1 + 1

λId − 1
λId

− 1
λId B−1 + 1

λId

)

= (τ + 1)Z.

Therefore,

µ>Γ−1µ− τ

τ + 1

σ2

τ2
(v>Fv + u>Gu) =

1

τ + 1

(
A−1a
B−1b

)>
Z−1

(
A−1a
B−1b

)
. (4.92)
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The full exponential argument φ defined in Equation (4.91) is given by

φ =
1

τ + 1

((
A−1a
B−1b

)>
Z−1

(
A−1a
B−1b

)
− a>A−1a− b>B−1b

)

=
1

τ + 1

(
a
b

)>(
A−1 0

0 B−1

)(
Z−1 −

(
A 0
0 B

))(
A−1 0

0 B−1

)(
a
b

)

=
1

τ + 1

(
a
b

)>(
A−1 0

0 B−1

)(
−AX−1A AX−1B
BX−1A −BX−1B

)(
A−1 0

0 B−1

)(
a
b

)

=
1

τ + 1

(
a
b

)>(−X−1 X−1

X−1 −X−1

)(
a
b

)

= − 1

τ + 1
(a− b)>X−1(a− b)

=
1

τ + 1
‖a− b‖2X−1 .

Substituting in (4.90) leads to

mπ
def
= π(Rd × Rd)

=
√

det(H)

(
mαmβ√
det(AB)

) 1
τ+1
(√

det(FG)

σ2d

) τ
τ+1

e
− 1

2(τ+1)
(‖a−b‖2

X−1 )
.

The determinants can be easily expressed as functions of C. First notice that

det(H) =
1

det(Γ)
=

σ4d

det(FG− Id)
,

and using the definition of C, it holds that

FG = B̃C−2Ã.

Therefore, det(FG) = det(ÃB̃)
det(C)2

. Keeping in mind that the closed-form expression of

C given in (4.82) is applied to the pair ( 1
τ Ã, B̃) in the unbalanced case, it holds that

C2 + σ2C = 1
τ ÃB̃. Hence,

FG− Id = B̃C−2Ã(Id − Ã−1C2B̃−1)

= B̃C−2Ã(Id − Ã−1(
1

τ
ÃB̃− σ2C)B̃−1)

= B̃C−2Ã(
(1− τ)

τ
Id + σ2Ã−1CB̃−1)

= σ2B̃C−2Ã(−2

γ
Id + Ã−1CB̃−1)

= σ2B̃C−2(−2

γ
ÃB̃ + C)B̃−1,

and therefore

det(FG− Id) = σ2d
det((− 2

γ ÃB̃ + C)

det(C)2
.
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Replacing the determinant formulas of FG and FG − Id and re-arranging the common
terms det(C) and σ finally leads to

π(Rd × Rd) =

(
mαmβσ

2d det(C)

√
det(ÃB̃)τ

det(AB)

) 1
τ+1

√
det(C− 2

γ
ÃB̃)

σ2d

e
− 1

2(τ+1)
(‖a−b‖2

X−1 )

= σd( 2
τ+1
−1)

(
mαmβ det(C)

√
det(ÃB̃)τ

det(AB)

) 1
τ+1

√
det(C− 2

γ ÃB̃)
e
− 1

2(τ+1)
(‖a−b‖2

X−1 )

= σd
1−τ
τ+1

(
mαmβ det(C)

√
det(ÃB̃)τ

det(AB)

) 1
τ+1

√
det(C− 2

γ ÃB̃)
e
− 1

2(τ+1)
(‖a−b‖2

X−1 )

= σ
dσ2

σ2+γ

(
mαmβ det(C)

√
det(ÃB̃)τ

det(AB)

) 1
τ+1

√
det(C− 2

γ ÃB̃)
e
− 1

2(τ+1)
(‖a−b‖2

X−1 )
.

(4.93)

Deriving a closed form for UOTσ. Using Equation (4.93), a direct application of
Proposition 4.13 yields

UOTσ(α, β) = γ(mα +mβ) + 2σ2(mαmβ)− 2(σ2 + 2γ)mπ? . (4.94)

This ends the proof of Theorem 4.14.





Chapter 5

Missing Data Imputation using
Optimal Transport

Missing data is a crucial issue when applying machine learning algorithms to real-world
datasets. Starting from the simple assumption that two batches extracted randomly from
the same dataset should share the same distribution, we leverage optimal transport distances
to quantify that criterion and turn it into a loss function to impute missing data values.
We propose practical methods to minimize these losses using end-to-end learning, that can
exploit or not parametric assumptions on the underlying distributions of values. We evaluate
our methods on datasets from the UCI repository, in MCAR, MAR and MNAR settings.
These experiments show that OT-based methods match or out-perform state-of-the-art
imputation methods, even for high percentages of missing values.

This chapter is based on [Muzellec et al., 2020].
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1 Introduction

Data collection is usually a messy process, resulting in datasets that have many missing
values. This has been an issue for as long as data scientists have prepared, curated and
obtained data, and is all the more inevitable given the vast amounts of data currently
collected. The literature on the subject is therefore abundant [Little and Rubin, 2002, van
Buuren, 2018]: a recent survey indicates that there are more than 150 implementations
available to handle missing data [Mayer et al., 2019]. These methods differ on the objectives
of their analysis (estimation of parameters and their variance, matrix completion, prediction),
the nature of the variables considered (categorical, mixed, etc.), the assumptions about
the data, and the missing data mechanisms. Imputation methods, which consist in filling
missing entries with plausible values, are very appealing as they allow to both get a guess for
the missing entries as well as to perform (with care) downstream machine learning methods
on the completed data. Efficient methods include, among others, methods based on low-rank
assumptions [Hastie et al., 2015], iterative random forests [Stekhoven and Buhlmann, 2011]
and imputation using variational autoencoders [Mattei and Frellsen, 2019, Ivanov et al.,
2019]. A desirable property for imputation methods is that they should preserve the joint
and marginal distributions of the data. Non-parametric Bayesian strategies [Murray and
Reiter, 2016] or recent approaches based on generative adversarial networks [Yoon et al.,
2018] are attempts in this direction. However, they can be quite cumbersome to implement
in practice.

We argue in this work that the optimal transport (OT) toolbox constitutes a natural,
sound and straightforward alternative. Indeed, optimal transport provides geometrically
meaningful distances to compare discrete distributions, and therefore data. Furthermore,
thanks to recent computational advances grounded on regularization [Cuturi, 2013], OT-
based divergences can be computed in a scalable and differentiable way [Peyré et al., 2019].
Those advances have allowed to successfully use OT as a loss function in many applications,
including multi-label classification [Frogner et al., 2015], inference of pathways Schiebinger
et al. [2019] and generative modeling [Arjovsky et al., 2017, Genevay et al., 2018, Salimans
et al., 2018]. Considering the similarities between generative modeling and missing data
imputation, it is therefore quite natural to use OT as a loss for the latter.

Contributions. This chapter presents two main contributions. First, we leverage OT to
define a loss function for missing value imputation. This loss function is the mathematical
translation of the simple intuition that two random batches from the same dataset should
follow the same distribution. Next, we provide algorithms for imputing missing values
according to this loss. Two types of algorithms are presented, the first (i) being non-
parametric, and the second (ii) defining a class of parametric models. The non-parametric
algorithm (i) enjoys the most degrees of freedom, and can therefore output imputations
which respect the global shape of the data while taking into account its local features. The
parametric algorithm (ii) is trained in a round-robin fashion similar to iterative conditional
imputation techniques, as implemented for instance in the mice package van Buuren and
Groothuis-Oudshoorn [2011]. Compared to the non-parametric method, this algorithm
allows to perform out-of-sample imputation. This creates a very flexible framework which
can be combined with many imputing strategies, including imputation with Multi-Layer
Perceptrons. Finally, these methods are showcased in extensive experiments on a variety
of datasets and for different missing values proportions and mechanisms, including the
difficult case of informative missing entries. The code to reproduce these experiments is
available at https://github.com/BorisMuzellec/MissingDataOT.

Notations. Let Ω = (ωij)ij ∈ {0, 1}n×d be a binary mask encoding observed entries, i.e.
ωij = 1 (resp. 0) iff the entry (i, j) is observed (resp. missing). We observe the following

https://github.com/BorisMuzellec/MissingDataOT
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incomplete data matrix:

X = X(obs) �Ω + NA� (1n×d −Ω),

where X(obs) ∈ Rn×d contains the observed entries, � is the elementwise product and 1n×d
is an n× d matrix filled with ones. Given the data matrix X, our goal is to construct an
estimate X̂ filling the missing entries of X, which can be written as

X̂ = X(obs) �Ω + X̂(imp) � (1n×d −Ω),

where X̂(imp) ∈ Rn×d contains the imputed values. Let xi: denote the i-th row of the data
set X, such that X = (xTi: )1≤i≤n. Similarly, x:j denotes the j-th column (variable) of the
data set X, such that X = (x:1| . . . |x:d), and X:−j denotes the dataset X in which the j-th
variable has been removed. For K ⊂ {1, . . . , n} a set of m indices, XK = (xk:)k∈K denotes
the corresponding batch, and by µm(XK) the empirical measure associated to XK , i.e.

µm(XK) := 1
m

∑

k∈K
δxk: .

Finally, ∆n
def
= {a ∈ Rn+ :

∑n
i=1 ai = 1} is the simplex in dimension n.

2 Background

2.1 Missing data

Rubin [1976] defined a widely used - yet controversial [Seaman et al., 2013] - nomenclature
for missing values mechanisms. This nomenclature distinguishes between three cases:
missing completely at random (MCAR), missing at random (MAR), and missing not
at random (MNAR). In MCAR, the missingness is independent of the data, whereas in
MAR, the probability of being missing depends only on observed values. A subsequent
part of the literature, with notable exceptions [Kim and Ying, 2018, Mohan and Pearl,
2019], only consider these “simple” mechanisms and struggles for the harder yet prevalent
MNAR case. MNAR values lead to important biases in the data, as the probability of
missingness then depends on the unobserved values. On the other hand, MCAR and MAR
are “ignorable” mechanisms in the sense that they do not make it necessary to model
explicitly the distribution of missing values when maximizing the observed likelihood.

The naive workaround which consists in deleting observations with missing entries is
not an alternative in high dimension. Indeed, let us assume as in Zhu et al. [2019] that
X is a n × d data matrix in which each entry is missing independently with probability
0.01. When d = 5, this would result in around 95% of the individuals (rows) being retained,
but for d = 300, only around 5% of rows have no missing entries. Hence, providing
plausible imputations for missing values quickly becomes necessary. Classical imputation
methods impute according to a joint distribution which is either explicit, or implicitly
defined through a set of conditional distributions. As an example, explicit joint modeling
methods include imputation models that assume a Gaussian distribution for the data,
whose parameters are estimated using EM algorithms [Dempster et al., 1977]. Missing
values are then imputed by drawing from their predictive distribution. A second instance
of such joint modeling methods are imputations assuming low-rank structure [Josse et al.,
2016]. The conditional modeling approach [van Buuren, 2018], also known as “sequential
imputation” or “imputation using chained equations” (ice) consists in specifying one model
for each variable. It predicts the missing values of each variable using the other variables
as explanatory, and cycles through the variables iterating this procedure to update the
imputations until predictions stabilize.
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Non-parametric methods like k-nearest neighbors imputation [Troyanskaya et al., 2001]
or random forest imputation [Stekhoven and Buhlmann, 2011] have also been developed
and account for the local geometry of the data. The herein proposed methods lie at
the intersection of global and local approaches and are derived in a non-parametric and
parametric version.

2.2 Reminders on Wasserstein distances, entropic regularization and
Sinkhorn divergences

Let α =
∑n

i=1 aiδxi , β =
∑n′

i=1 biδyi be two discrete distributions, described by their
supports (xi)

n
i=1 ∈ Rn×p and (yi)

n′
i=1 ∈ Rn′×p and weight vectors a ∈ ∆n and b ∈ ∆n′ .

Optimal transport compares α and β by considering the most efficient way of transporting
the masses a and b onto each-other, according to a ground cost between the supports. The
(2-)Wasserstein distance corresponds to the case where this ground cost is quadratic:

W 2
2 (α, β)

def
= min

P∈U(a,b)
〈P, M〉, (5.1)

where U(a,b)
def
= {P ∈ Rn×n′ : P1n′ = a,PT1n = b} is the set of transportation plans,

and M =
(
‖xi − yj‖2

)
ij
∈ Rn×n′ is the matrix of pairwise squared distances between the

supports. W2 is not differentiable and requires solving a costly linear program via network
simplex methods [Peyré et al., 2019, §3]. Entropic regularization alleviates both issues:
consider

OTε(α, β)
def
= min

P∈U(a,b)
〈P, M〉+ εh(P), (5.2)

where ε > 0 and h(P)
def
=
∑

ij pij log pij is the negative entropy. Then, OTε(α, β) is
differentiable and can be solved using Sinkhorn iterations [Cuturi, 2013]. However, due
to the entropy term, OTε is no longer positive. This issue is solved through debiasing, by
subtracting auto-correlation terms. Let

Sε(α, β)
def
= OTε(α, β)− 1

2
(OTε(α, α) + OTε(β, β)). (5.3)

Equation (5.3) defines the Sinkhorn divergences [Genevay et al., 2018], which are positive,
convex, and can be computed with little additional cost compared to entropic OT [Feydy
et al., 2019]. Sinkhorn divergences hence provide a differentiable and tractable proxy for
Wasserstein distances, and will be used in the following.

OT gradient-based methods. Not only are the OT metrics described above good
measures of distributional closeness, they are also well-adapted to gradient-based imputation
methods. Indeed, let XK ,XL be two batches drawn from X. Then, gradient updates for
OTε(µm(XK), µm(XL)), ε ≥ 0 w.r.t a point xk: in XK correspond to taking steps along the
so-called barycentric transport map. Indeed, with (half) quadratic costs, it holds [Cuturi
and Doucet, 2014, §4.3] that

∇xk:OTε(µm(XK), µm(XL)) = m
∑

`

P?
k`(xk: − x`:),

where P? is the optimal (regularized) transport plan. Therefore, a gradient based-update
is of the form

xk: ← (1− t)xk: + tm
∑

l

P?
klxl:. (5.4)

In a missing value imputation context, Equation (5.4) thus corresponds to updating values
to make them closer to the target points given by transportation plans. Building on this
fact, OT gradient-based imputation methods are proposed in the next section.



3. IMPUTING MISSING VALUES USING OT 127

3 Imputing Missing Values using OT

Let XK and XL be two batches respectively extracted from the complete rows and the
incomplete rows in X, such that only the batch XL contains missing values. In this one-
sided incomplete batch setting, a good imputation should preserve the distribution from
the complete batch, meaning that XK should be close to XL in terms of distributions. The
OT-based metrics described in Section 2 provide natural criteria to catch this distributional
proximity and derive imputation methods. However, as observed in Section 2, in high
dimension or with a high proportion of missing values, it is unlikely or even impossible to
obtain batches from X with no missing values. Nonetheless, a good imputation method
should still ensure that the distributions of any two i.i.d. incomplete batches XK and XL,
both containing missing values, should be close. This implies in particular that OT-metrics
between the distributions µm(XK) and µm(XL) should have small values. This criterion,
which is weaker than the one above with one-sided missing data but is more amenable, will
be considered from now on.

Direct imputation. Algorithm 5 is a direct implementation of this criterion, aiming
to impute missing values for quantitative variables by minimizing OT distances between
batches. First, missing values of any variable are initialized with the mean of observed entries
plus a small amount of noise (to preserve the marginals and to facilitate the optimization).
Then, batches are sequentially sampled and the Sinkhorn divergence between batches
is minimized with respect to the imputed values, using gradient updates (here using
RMSprop [Tieleman and Hinton, 2015]).

Algorithm 5 Batch Sinkhorn Imputation
Input: X ∈ (R ∪NA})n×d, Ω ∈ {0, 1}n×d, α, η, ε > 0, n ≥ m > 0,
Initialization: for j = 1, . . . , d,

• for i s.t. ωij = 0, x̂ij ← xobs:j + εij , with εij ∼ N (0, η) and xobs:j corresponds to the
mean of the observed entries in the j-th variable (missing entries)

• for i s.t. ωij = 1, x̂ij ← xij (observed entries)

for t = 1, 2, ...,tmax do
Sample two sets K and L of m indices
L(X̂K , X̂L)← Sε(µm(X̂K), µm(X̂L))

X̂
(imp)
K∪L ← X̂

(imp)
K∪L − αRMSprop(∇

X̂
(imp)
K∪L
L)

end for
Output: X̂

OT as a loss for missing data imputation. Taking a step back, one can see that
Algorithm 5 essentially uses Sinkhorn divergences between batches as a loss function to
impute values for a model in which “one parameter equals one imputed value”. Formally,
for a fixed batch size m, this loss is defined as

Lm(X)
def
=
∑

K:0≤k1<...<km≤n
L:0≤`1<...<`m≤n

Sε(µm(XK), µm(XL)). (5.5)

Equation (5.5) corresponds to the “autocorrelation" counterpart of the minibatch Wasser-
stein distances described in Fatras et al. [2019], Salimans et al. [2018].

Although Algorithm 5 is straightforward, a downside is that it cannot directly generate
imputations for out-of-sample data points with missing values. Hence, a natural extension is
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to use the loss defined in Equation (5.5) to fit parametric imputation models, provided they
are differentiable with respect to their parameters. At a high level, this method is described
by Algorithm 6. Algorithm 6 takes as an input an imputer model with a parameter Θ

Algorithm 6 Meta Sinkhorn Imputation
Input: X ∈ Rn×d, Ω ∈ {0, 1}n×d, Imputer(·, ·, ·), Θ0, ε > 0, n ≥ m > 0,

X̂0 ← same initialization as in Algorithm 5
Θ̂← Θ0

for t = 1, 2, ..., tmax do
for k = 1, 2, ...,K do

X̂← Imputer(X̂t,Ω, Θ̂)
Sample two sets K and L of m indices
L(X̂K , X̂L)← Sε(µm(X̂K), µm(X̂L))
∇ΘL ← AutoDiff(L(X̂K , X̂L))
Θ̂← Θ̂− αAdam(∇ΘL)

end for
X̂t+1 ← Imputer(X̂t,Ω, Θ̂)

end for
Output: Completed data X̂ = X̂tmax , Imputer(·, ·, Θ̂)

such that Imputer(X,Ω,Θ) returns imputations for the missing values in X. This imputer
has to be differentiable w.r.t. its parameter Θ, so that the batch Sinkhorn loss L can be
back-propagated through X̂ to perform gradient-based updates of Θ. Algorithm 6 does not
only return the completed data matrix X̂, but also the trained parameter Θ̂, which can
then be re-used to impute missing values in out-of-sample data.

Imputer( · , ✓j)
<latexit sha1_base64="bcoocRabIg6+FjAKbfe+t2t4Jv4=">AAACIHicbVDLTgJBEJzFF+IL9ehlIzHBxJBdotF4InrRGybySFhCZocGRmZ2NzO9BLLhX4wfY7yhR/0aB+QgaJ9qqmrSXeVHgmt0nE8rtbK6tr6R3sxsbe/s7mX3D6o6jBWDCgtFqOo+1SB4ABXkKKAeKaDSF1Dz+7dTvTYApXkYPOIogqak3YB3OKNoqFb22kMYYnIvoxhBjfNeT0eUQVIoXoAce6wd4iJ15mEPkLaeTlvZnFNwZmP/Be4c5Mh8yq3sxGuHLJYQIBNU64brRNhMqELOBIwzXqzBbOrTLjTaAx7pgErQzWQ4izm2Tzqhss12e/b+bU+o1HokfeORFHt6WZuS/2mNGDtXzYQH0/QBMxajdWJhY2hP27LbXAFDMTKAMsXNoTbrUUWZKUtnTAPuct6/oFosuE7BfTjPlW7mXaTJETkmeeKSS1Iid6RMKoSRZ/JKJuTderHerIn18WNNWfM/h2RhrK9v5XWkAg==</latexit><latexit sha1_base64="bcoocRabIg6+FjAKbfe+t2t4Jv4=">AAACIHicbVDLTgJBEJzFF+IL9ehlIzHBxJBdotF4InrRGybySFhCZocGRmZ2NzO9BLLhX4wfY7yhR/0aB+QgaJ9qqmrSXeVHgmt0nE8rtbK6tr6R3sxsbe/s7mX3D6o6jBWDCgtFqOo+1SB4ABXkKKAeKaDSF1Dz+7dTvTYApXkYPOIogqak3YB3OKNoqFb22kMYYnIvoxhBjfNeT0eUQVIoXoAce6wd4iJ15mEPkLaeTlvZnFNwZmP/Be4c5Mh8yq3sxGuHLJYQIBNU64brRNhMqELOBIwzXqzBbOrTLjTaAx7pgErQzWQ4izm2Tzqhss12e/b+bU+o1HokfeORFHt6WZuS/2mNGDtXzYQH0/QBMxajdWJhY2hP27LbXAFDMTKAMsXNoTbrUUWZKUtnTAPuct6/oFosuE7BfTjPlW7mXaTJETkmeeKSS1Iid6RMKoSRZ/JKJuTderHerIn18WNNWfM/h2RhrK9v5XWkAg==</latexit><latexit sha1_base64="bcoocRabIg6+FjAKbfe+t2t4Jv4=">AAACIHicbVDLTgJBEJzFF+IL9ehlIzHBxJBdotF4InrRGybySFhCZocGRmZ2NzO9BLLhX4wfY7yhR/0aB+QgaJ9qqmrSXeVHgmt0nE8rtbK6tr6R3sxsbe/s7mX3D6o6jBWDCgtFqOo+1SB4ABXkKKAeKaDSF1Dz+7dTvTYApXkYPOIogqak3YB3OKNoqFb22kMYYnIvoxhBjfNeT0eUQVIoXoAce6wd4iJ15mEPkLaeTlvZnFNwZmP/Be4c5Mh8yq3sxGuHLJYQIBNU64brRNhMqELOBIwzXqzBbOrTLjTaAx7pgErQzWQ4izm2Tzqhss12e/b+bU+o1HokfeORFHt6WZuS/2mNGDtXzYQH0/QBMxajdWJhY2hP27LbXAFDMTKAMsXNoTbrUUWZKUtnTAPuct6/oFosuE7BfTjPlW7mXaTJETkmeeKSS1Iid6RMKoSRZ/JKJuTderHerIn18WNNWfM/h2RhrK9v5XWkAg==</latexit>

X̂T
:1<latexit sha1_base64="zpqYMpftmmZUKh3SzKlp8tCs8CU=">AAAB/XicbVDLSsNAFJ34rPUVdeHCzWARXJVEBMVV0Y3LCn1BE8NkOmmHTh7M3BRLCH6MuKtu/QzX/o2TmoW2ntW595wL5x4/EVyBZX0ZK6tr6xubla3q9s7u3r55cNhRcSopa9NYxLLnE8UEj1gbOAjWSyQjoS9Y1x/fFXp3wqTicdSCacLckAwjHnBKQK8889gZEcickMDID7JennvZjZ0/tjyzZtWtOfAysUtSQyWanvnpDGKahiwCKohSfdtKwM2IBE4Fy6tOqlhC6JgMWX8w4YmKSMiUmz3Nf8jxWRBLDCOG5/Nve0ZCpaahrz1FTLWoFcv/tH4KwbWb8ShJgUVUW7QWpAJDjIsq8IBLRkFMNSFUch0U0xGRhIIurKobsBf/XSadi7pt1e2Hy1rjtuyigk7QKTpHNrpCDXSPmqiNKMrRC5qhN+PZeDVmxvuPdcUob47QHxgf3yf+law=</latexit><latexit sha1_base64="zpqYMpftmmZUKh3SzKlp8tCs8CU=">AAAB/XicbVDLSsNAFJ34rPUVdeHCzWARXJVEBMVV0Y3LCn1BE8NkOmmHTh7M3BRLCH6MuKtu/QzX/o2TmoW2ntW595wL5x4/EVyBZX0ZK6tr6xubla3q9s7u3r55cNhRcSopa9NYxLLnE8UEj1gbOAjWSyQjoS9Y1x/fFXp3wqTicdSCacLckAwjHnBKQK8889gZEcickMDID7JennvZjZ0/tjyzZtWtOfAysUtSQyWanvnpDGKahiwCKohSfdtKwM2IBE4Fy6tOqlhC6JgMWX8w4YmKSMiUmz3Nf8jxWRBLDCOG5/Nve0ZCpaahrz1FTLWoFcv/tH4KwbWb8ShJgUVUW7QWpAJDjIsq8IBLRkFMNSFUch0U0xGRhIIurKobsBf/XSadi7pt1e2Hy1rjtuyigk7QKTpHNrpCDXSPmqiNKMrRC5qhN+PZeDVmxvuPdcUob47QHxgf3yf+law=</latexit><latexit sha1_base64="zpqYMpftmmZUKh3SzKlp8tCs8CU=">AAAB/XicbVDLSsNAFJ34rPUVdeHCzWARXJVEBMVV0Y3LCn1BE8NkOmmHTh7M3BRLCH6MuKtu/QzX/o2TmoW2ntW595wL5x4/EVyBZX0ZK6tr6xubla3q9s7u3r55cNhRcSopa9NYxLLnE8UEj1gbOAjWSyQjoS9Y1x/fFXp3wqTicdSCacLckAwjHnBKQK8889gZEcickMDID7JennvZjZ0/tjyzZtWtOfAysUtSQyWanvnpDGKahiwCKohSfdtKwM2IBE4Fy6tOqlhC6JgMWX8w4YmKSMiUmz3Nf8jxWRBLDCOG5/Nve0ZCpaahrz1FTLWoFcv/tH4KwbWb8ShJgUVUW7QWpAJDjIsq8IBLRkFMNSFUch0U0xGRhIIurKobsBf/XSadi7pt1e2Hy1rjtuyigk7QKTpHNrpCDXSPmqiNKMrRC5qhN+PZeDVmxvuPdcUob47QHxgf3yf+law=</latexit>

X̂T
:1<latexit sha1_base64="zpqYMpftmmZUKh3SzKlp8tCs8CU=">AAAB/XicbVDLSsNAFJ34rPUVdeHCzWARXJVEBMVV0Y3LCn1BE8NkOmmHTh7M3BRLCH6MuKtu/QzX/o2TmoW2ntW595wL5x4/EVyBZX0ZK6tr6xubla3q9s7u3r55cNhRcSopa9NYxLLnE8UEj1gbOAjWSyQjoS9Y1x/fFXp3wqTicdSCacLckAwjHnBKQK8889gZEcickMDID7JennvZjZ0/tjyzZtWtOfAysUtSQyWanvnpDGKahiwCKohSfdtKwM2IBE4Fy6tOqlhC6JgMWX8w4YmKSMiUmz3Nf8jxWRBLDCOG5/Nve0ZCpaahrz1FTLWoFcv/tH4KwbWb8ShJgUVUW7QWpAJDjIsq8IBLRkFMNSFUch0U0xGRhIIurKobsBf/XSadi7pt1e2Hy1rjtuyigk7QKTpHNrpCDXSPmqiNKMrRC5qhN+PZeDVmxvuPdcUob47QHxgf3yf+law=</latexit><latexit sha1_base64="zpqYMpftmmZUKh3SzKlp8tCs8CU=">AAAB/XicbVDLSsNAFJ34rPUVdeHCzWARXJVEBMVV0Y3LCn1BE8NkOmmHTh7M3BRLCH6MuKtu/QzX/o2TmoW2ntW595wL5x4/EVyBZX0ZK6tr6xubla3q9s7u3r55cNhRcSopa9NYxLLnE8UEj1gbOAjWSyQjoS9Y1x/fFXp3wqTicdSCacLckAwjHnBKQK8889gZEcickMDID7JennvZjZ0/tjyzZtWtOfAysUtSQyWanvnpDGKahiwCKohSfdtKwM2IBE4Fy6tOqlhC6JgMWX8w4YmKSMiUmz3Nf8jxWRBLDCOG5/Nve0ZCpaahrz1FTLWoFcv/tH4KwbWb8ShJgUVUW7QWpAJDjIsq8IBLRkFMNSFUch0U0xGRhIIurKobsBf/XSadi7pt1e2Hy1rjtuyigk7QKTpHNrpCDXSPmqiNKMrRC5qhN+PZeDVmxvuPdcUob47QHxgf3yf+law=</latexit><latexit sha1_base64="zpqYMpftmmZUKh3SzKlp8tCs8CU=">AAAB/XicbVDLSsNAFJ34rPUVdeHCzWARXJVEBMVV0Y3LCn1BE8NkOmmHTh7M3BRLCH6MuKtu/QzX/o2TmoW2ntW595wL5x4/EVyBZX0ZK6tr6xubla3q9s7u3r55cNhRcSopa9NYxLLnE8UEj1gbOAjWSyQjoS9Y1x/fFXp3wqTicdSCacLckAwjHnBKQK8889gZEcickMDID7JennvZjZ0/tjyzZtWtOfAysUtSQyWanvnpDGKahiwCKohSfdtKwM2IBE4Fy6tOqlhC6JgMWX8w4YmKSMiUmz3Nf8jxWRBLDCOG5/Nve0ZCpaahrz1FTLWoFcv/tH4KwbWb8ShJgUVUW7QWpAJDjIsq8IBLRkFMNSFUch0U0xGRhIIurKobsBf/XSadi7pt1e2Hy1rjtuyigk7QKTpHNrpCDXSPmqiNKMrRC5qhN+PZeDVmxvuPdcUob47QHxgf3yf+law=</latexit>

…

…

X
(imp)
:j

<latexit sha1_base64="RNqN4xa15k1ESHhyJcKQIiY6mdw=">AAAB/XicbVC7TsMwFHXKq5RXgIGBxaJCKkuVICQQUwULY5HoQ2pD5LhOa2onlu1UVFHExyC2wspnMPM3OCUDFM507j3nSueeQDCqtON8WqWl5ZXVtfJ6ZWNza3vH3t1rqziRmLRwzGLZDZAijEakpalmpCskQTxgpBOMr3O9MyFS0Ti601NBPI6GEQ0pRtqsfPugz5EeBWHazfz08iG7T2uUi5PMt6tO3ZkD/iVuQaqgQNO3P/qDGCecRBozpFTPdYT2UiQ1xYxklX6iiEB4jIakN5hQoSLEifLSx/kPGTwOYwn1iMD5/NOeIq7UlAfGk2dVi1q+/E/rJTq88FIaiUSTCBuL0cKEQR3DvAo4oJJgzaaGICypCQrxCEmEtSmsYhpwF//9S9qnddepu7dn1cZV0UUZHIIjUAMuOAcNcAOaoAUwyMAzmIFX68l6sWbW27e1ZBU3++AXrPcv+paVjw==</latexit><latexit sha1_base64="RNqN4xa15k1ESHhyJcKQIiY6mdw=">AAAB/XicbVC7TsMwFHXKq5RXgIGBxaJCKkuVICQQUwULY5HoQ2pD5LhOa2onlu1UVFHExyC2wspnMPM3OCUDFM507j3nSueeQDCqtON8WqWl5ZXVtfJ6ZWNza3vH3t1rqziRmLRwzGLZDZAijEakpalmpCskQTxgpBOMr3O9MyFS0Ti601NBPI6GEQ0pRtqsfPugz5EeBWHazfz08iG7T2uUi5PMt6tO3ZkD/iVuQaqgQNO3P/qDGCecRBozpFTPdYT2UiQ1xYxklX6iiEB4jIakN5hQoSLEifLSx/kPGTwOYwn1iMD5/NOeIq7UlAfGk2dVi1q+/E/rJTq88FIaiUSTCBuL0cKEQR3DvAo4oJJgzaaGICypCQrxCEmEtSmsYhpwF//9S9qnddepu7dn1cZV0UUZHIIjUAMuOAcNcAOaoAUwyMAzmIFX68l6sWbW27e1ZBU3++AXrPcv+paVjw==</latexit><latexit sha1_base64="RNqN4xa15k1ESHhyJcKQIiY6mdw=">AAAB/XicbVC7TsMwFHXKq5RXgIGBxaJCKkuVICQQUwULY5HoQ2pD5LhOa2onlu1UVFHExyC2wspnMPM3OCUDFM507j3nSueeQDCqtON8WqWl5ZXVtfJ6ZWNza3vH3t1rqziRmLRwzGLZDZAijEakpalmpCskQTxgpBOMr3O9MyFS0Ti601NBPI6GEQ0pRtqsfPugz5EeBWHazfz08iG7T2uUi5PMt6tO3ZkD/iVuQaqgQNO3P/qDGCecRBozpFTPdYT2UiQ1xYxklX6iiEB4jIakN5hQoSLEifLSx/kPGTwOYwn1iMD5/NOeIq7UlAfGk2dVi1q+/E/rJTq88FIaiUSTCBuL0cKEQR3DvAo4oJJgzaaGICypCQrxCEmEtSmsYhpwF//9S9qnddepu7dn1cZV0UUZHIIjUAMuOAcNcAOaoAUwyMAzmIFX68l6sWbW27e1ZBU3++AXrPcv+paVjw==</latexit> Imputer( · , ✓j+1)
<latexit sha1_base64="aOg8yxh3dXhf7JsKp/QONvYOJi8=">AAACJHicbVBNS8NAFNzU7/pV9eglWARFKUlR9CSiF70pWCs0IWy2r+3a3STsvpSWkH8j/hgRPKgHL/4Wt7UHq85pdmaW996EieAaHefDKkxNz8zOzS8UF5eWV1ZLa+u3Ok4VgxqLRazuQqpB8AhqyFHAXaKAylBAPeyeD/16D5TmcXSDgwR8SdsRb3FG0UhB6cRD6GN2KZMUQeU7XkcnlEFWqR6CzD3WjHFS2vewA0iD7H7PzXeDUtmpOCPYf4k7JmUyxlVQevGaMUslRMgE1brhOgn6GVXImYC86KUazLQubUOj2eOJjqgE7Wf90am5vd2KlW02sEfvn/GMSq0HMjQZSbGjf3tD8T+vkWLr2M94NGwgYiZivFYqbIztYWN2kytgKAaGUKa4WdRmHaooM4XpomnA/X3vX3JbrbhOxb0+KJ+ejbuYJ5tki+wQlxyRU3JBrkiNMPJAnsgrebMerWfr1Xr/jhas8Z8NMgHr8wvV76V+</latexit><latexit sha1_base64="aOg8yxh3dXhf7JsKp/QONvYOJi8=">AAACJHicbVBNS8NAFNzU7/pV9eglWARFKUlR9CSiF70pWCs0IWy2r+3a3STsvpSWkH8j/hgRPKgHL/4Wt7UHq85pdmaW996EieAaHefDKkxNz8zOzS8UF5eWV1ZLa+u3Ok4VgxqLRazuQqpB8AhqyFHAXaKAylBAPeyeD/16D5TmcXSDgwR8SdsRb3FG0UhB6cRD6GN2KZMUQeU7XkcnlEFWqR6CzD3WjHFS2vewA0iD7H7PzXeDUtmpOCPYf4k7JmUyxlVQevGaMUslRMgE1brhOgn6GVXImYC86KUazLQubUOj2eOJjqgE7Wf90am5vd2KlW02sEfvn/GMSq0HMjQZSbGjf3tD8T+vkWLr2M94NGwgYiZivFYqbIztYWN2kytgKAaGUKa4WdRmHaooM4XpomnA/X3vX3JbrbhOxb0+KJ+ejbuYJ5tki+wQlxyRU3JBrkiNMPJAnsgrebMerWfr1Xr/jhas8Z8NMgHr8wvV76V+</latexit><latexit sha1_base64="aOg8yxh3dXhf7JsKp/QONvYOJi8=">AAACJHicbVBNS8NAFNzU7/pV9eglWARFKUlR9CSiF70pWCs0IWy2r+3a3STsvpSWkH8j/hgRPKgHL/4Wt7UHq85pdmaW996EieAaHefDKkxNz8zOzS8UF5eWV1ZLa+u3Ok4VgxqLRazuQqpB8AhqyFHAXaKAylBAPeyeD/16D5TmcXSDgwR8SdsRb3FG0UhB6cRD6GN2KZMUQeU7XkcnlEFWqR6CzD3WjHFS2vewA0iD7H7PzXeDUtmpOCPYf4k7JmUyxlVQevGaMUslRMgE1brhOgn6GVXImYC86KUazLQubUOj2eOJjqgE7Wf90am5vd2KlW02sEfvn/GMSq0HMjQZSbGjf3tD8T+vkWLr2M94NGwgYiZivFYqbIztYWN2kytgKAaGUKa4WdRmHaooM4XpomnA/X3vX3JbrbhOxb0+KJ+ejbuYJ5tki+wQlxyRU3JBrkiNMPJAnsgrebMerWfr1Xr/jhas8Z8NMgHr8wvV76V+</latexit>

…

…

X
(imp)
:j+1

<latexit sha1_base64="S9GWsRRM1lJlvuIgPQ533+41A+s=">AAAB/3icbVDLSsNAFJ34rPUVdSVuBotQEUoiguKq6MZlBfuANpbJdNKOnUmGmUmxhCB+jLirbv0K1/6Nk5qFtp7VufecC+ceXzCqtON8WQuLS8srq4W14vrG5ta2vbPbUFEsManjiEWy5SNFGA1JXVPNSEtIgrjPSNMfXmd6c0SkolF4p8eCeBz1QxpQjLRZde39Dkd64AdJK+0mlw8nbnqflCkXx2nXLjkVZwo4T9yclECOWtf+7PQiHHMSasyQUm3XEdpLkNQUM5IWO7EiAuEh6pN2b0SFChEnyksep1+k8CiIJNQDAqfzb3uCuFJj7htPllbNatnyP60d6+DCS2goYk1CbCxGC2IGdQSzMmCPSoI1GxuCsKQmKMQDJBHWprKiacCd/XeeNE4rrlNxb89K1au8iwI4AIegDFxwDqrgBtRAHWDwBF7ABLxZz9arNbHef6wLVn6zB/7A+vgG3fqV/w==</latexit><latexit sha1_base64="S9GWsRRM1lJlvuIgPQ533+41A+s=">AAAB/3icbVDLSsNAFJ34rPUVdSVuBotQEUoiguKq6MZlBfuANpbJdNKOnUmGmUmxhCB+jLirbv0K1/6Nk5qFtp7VufecC+ceXzCqtON8WQuLS8srq4W14vrG5ta2vbPbUFEsManjiEWy5SNFGA1JXVPNSEtIgrjPSNMfXmd6c0SkolF4p8eCeBz1QxpQjLRZde39Dkd64AdJK+0mlw8nbnqflCkXx2nXLjkVZwo4T9yclECOWtf+7PQiHHMSasyQUm3XEdpLkNQUM5IWO7EiAuEh6pN2b0SFChEnyksep1+k8CiIJNQDAqfzb3uCuFJj7htPllbNatnyP60d6+DCS2goYk1CbCxGC2IGdQSzMmCPSoI1GxuCsKQmKMQDJBHWprKiacCd/XeeNE4rrlNxb89K1au8iwI4AIegDFxwDqrgBtRAHWDwBF7ABLxZz9arNbHef6wLVn6zB/7A+vgG3fqV/w==</latexit><latexit sha1_base64="S9GWsRRM1lJlvuIgPQ533+41A+s=">AAAB/3icbVDLSsNAFJ34rPUVdSVuBotQEUoiguKq6MZlBfuANpbJdNKOnUmGmUmxhCB+jLirbv0K1/6Nk5qFtp7VufecC+ceXzCqtON8WQuLS8srq4W14vrG5ta2vbPbUFEsManjiEWy5SNFGA1JXVPNSEtIgrjPSNMfXmd6c0SkolF4p8eCeBz1QxpQjLRZde39Dkd64AdJK+0mlw8nbnqflCkXx2nXLjkVZwo4T9yclECOWtf+7PQiHHMSasyQUm3XEdpLkNQUM5IWO7EiAuEh6pN2b0SFChEnyksep1+k8CiIJNQDAqfzb3uCuFJj7htPllbNatnyP60d6+DCS2goYk1CbCxGC2IGdQSzMmCPSoI1GxuCsKQmKMQDJBHWprKiacCd/XeeNE4rrlNxb89K1au8iwI4AIegDFxwDqrgBtRAHWDwBF7ABLxZz9arNbHef6wLVn6zB/7A+vgG3fqV/w==</latexit>

X
(imp)
:j�1

<latexit sha1_base64="Ekw9zdQoD4TFIwnfkS91kDJcY9o=">AAAB/3icbVDLSsNAFJ34rPUVdSVuBotQF5ZEBMVV0Y3LCvYBbSyT6aQdO5MMM5NiCUH8GHFX3foVrv0bJzULbT2rc+85F849vmBUacf5shYWl5ZXVgtrxfWNza1te2e3oaJYYlLHEYtky0eKMBqSuqaakZaQBHGfkaY/vM705ohIRaPwTo8F8TjqhzSgGGmz6tr7HY70wA+SVtpNLh9O3PQ+KVMujtOuXXIqzhRwnrg5KYEcta792elFOOYk1JghpdquI7SXIKkpZiQtdmJFBMJD1Cft3ogKFSJOlJc8Tr9I4VEQSagHBE7n3/YEcaXG3DeeLK2a1bLlf1o71sGFl9BQxJqE2FiMFsQM6ghmZcAelQRrNjYEYUlNUIgHSCKsTWVF04A7++88aZxWXKfi3p6Vqld5FwVwAA5BGbjgHFTBDaiBOsDgCbyACXiznq1Xa2K9/1gXrPxmD/yB9fEN4RCWAQ==</latexit><latexit sha1_base64="Ekw9zdQoD4TFIwnfkS91kDJcY9o=">AAAB/3icbVDLSsNAFJ34rPUVdSVuBotQF5ZEBMVV0Y3LCvYBbSyT6aQdO5MMM5NiCUH8GHFX3foVrv0bJzULbT2rc+85F849vmBUacf5shYWl5ZXVgtrxfWNza1te2e3oaJYYlLHEYtky0eKMBqSuqaakZaQBHGfkaY/vM705ohIRaPwTo8F8TjqhzSgGGmz6tr7HY70wA+SVtpNLh9O3PQ+KVMujtOuXXIqzhRwnrg5KYEcta792elFOOYk1JghpdquI7SXIKkpZiQtdmJFBMJD1Cft3ogKFSJOlJc8Tr9I4VEQSagHBE7n3/YEcaXG3DeeLK2a1bLlf1o71sGFl9BQxJqE2FiMFsQM6ghmZcAelQRrNjYEYUlNUIgHSCKsTWVF04A7++88aZxWXKfi3p6Vqld5FwVwAA5BGbjgHFTBDaiBOsDgCbyACXiznq1Xa2K9/1gXrPxmD/yB9fEN4RCWAQ==</latexit><latexit sha1_base64="Ekw9zdQoD4TFIwnfkS91kDJcY9o=">AAAB/3icbVDLSsNAFJ34rPUVdSVuBotQF5ZEBMVV0Y3LCvYBbSyT6aQdO5MMM5NiCUH8GHFX3foVrv0bJzULbT2rc+85F849vmBUacf5shYWl5ZXVgtrxfWNza1te2e3oaJYYlLHEYtky0eKMBqSuqaakZaQBHGfkaY/vM705ohIRaPwTo8F8TjqhzSgGGmz6tr7HY70wA+SVtpNLh9O3PQ+KVMujtOuXXIqzhRwnrg5KYEcta792elFOOYk1JghpdquI7SXIKkpZiQtdmJFBMJD1Cft3ogKFSJOlJc8Tr9I4VEQSagHBE7n3/YEcaXG3DeeLK2a1bLlf1o71sGFl9BQxJqE2FiMFsQM6ghmZcAelQRrNjYEYUlNUIgHSCKsTWVF04A7++88aZxWXKfi3p6Vqld5FwVwAA5BGbjgHFTBDaiBOsDgCbyACXiznq1Xa2K9/1gXrPxmD/yB9fEN4RCWAQ==</latexit>

S"

⇣ ���
⌘

<latexit sha1_base64="uxG5FbYQr7oNWCXC3hI250OJZb4="></latexit><latexit sha1_base64="uxG5FbYQr7oNWCXC3hI250OJZb4="></latexit><latexit sha1_base64="uxG5FbYQr7oNWCXC3hI250OJZb4="></latexit>

Sinkhorn batch loss 

✓j  ✓j � ⌘r✓j
S"

<latexit sha1_base64="XVITvbC9D719srnDN0odnykyAIU=">AAACKXicbVDLSgNBEJz1bXxFPXoZDIIXw64IehS9eFQ0GsiGpXfSm4yZfTDTGw1LPkj8GPGmXv0RJzGKGutUU1XTdFeYKWnIdV+dqemZ2bn5hcXS0vLK6lp5fePapLkWWBOpSnU9BINKJlgjSQrrmUaIQ4U3Yfd06N/0UBuZJlfUz7AZQzuRkRRAVgrKpz51kCC45b7CiEDr9I5/a3vct4T7CYQKguJLH/DLwO+BxsxINZxScavuCHySeGNSYWOcB+Unv5WKPMaEhAJjGp6bUbMATVIoHJT83GAGogttbLR6MjMJxGiaxf3o3gHfiVLN7S589P4ZLyA2ph+HNhMDdcxfbyj+5zVyio6ahUyynDARNmK9KFecUj6sjbekRkGqbwkILe2iXHRAgyBbbsk24P29d5Jc71c9t+pdHFSOT8ZdLLAtts12mccO2TE7Y+esxgR7YE/shb06j86z8+K8fUannPGfTfYLzvsH4bSnqQ==</latexit><latexit sha1_base64="XVITvbC9D719srnDN0odnykyAIU=">AAACKXicbVDLSgNBEJz1bXxFPXoZDIIXw64IehS9eFQ0GsiGpXfSm4yZfTDTGw1LPkj8GPGmXv0RJzGKGutUU1XTdFeYKWnIdV+dqemZ2bn5hcXS0vLK6lp5fePapLkWWBOpSnU9BINKJlgjSQrrmUaIQ4U3Yfd06N/0UBuZJlfUz7AZQzuRkRRAVgrKpz51kCC45b7CiEDr9I5/a3vct4T7CYQKguJLH/DLwO+BxsxINZxScavuCHySeGNSYWOcB+Unv5WKPMaEhAJjGp6bUbMATVIoHJT83GAGogttbLR6MjMJxGiaxf3o3gHfiVLN7S589P4ZLyA2ph+HNhMDdcxfbyj+5zVyio6ahUyynDARNmK9KFecUj6sjbekRkGqbwkILe2iXHRAgyBbbsk24P29d5Jc71c9t+pdHFSOT8ZdLLAtts12mccO2TE7Y+esxgR7YE/shb06j86z8+K8fUannPGfTfYLzvsH4bSnqQ==</latexit><latexit sha1_base64="XVITvbC9D719srnDN0odnykyAIU=">AAACKXicbVDLSgNBEJz1bXxFPXoZDIIXw64IehS9eFQ0GsiGpXfSm4yZfTDTGw1LPkj8GPGmXv0RJzGKGutUU1XTdFeYKWnIdV+dqemZ2bn5hcXS0vLK6lp5fePapLkWWBOpSnU9BINKJlgjSQrrmUaIQ4U3Yfd06N/0UBuZJlfUz7AZQzuRkRRAVgrKpz51kCC45b7CiEDr9I5/a3vct4T7CYQKguJLH/DLwO+BxsxINZxScavuCHySeGNSYWOcB+Unv5WKPMaEhAJjGp6bUbMATVIoHJT83GAGogttbLR6MjMJxGiaxf3o3gHfiVLN7S589P4ZLyA2ph+HNhMDdcxfbyj+5zVyio6ahUyynDARNmK9KFecUj6sjbekRkGqbwkILe2iXHRAgyBbbsk24P29d5Jc71c9t+pdHFSOT8ZdLLAtts12mccO2TE7Y+esxgR7YE/shb06j86z8+K8fUannPGfTfYLzvsH4bSnqQ==</latexit>

X̂T
:1<latexit sha1_base64="zpqYMpftmmZUKh3SzKlp8tCs8CU=">AAAB/XicbVDLSsNAFJ34rPUVdeHCzWARXJVEBMVV0Y3LCn1BE8NkOmmHTh7M3BRLCH6MuKtu/QzX/o2TmoW2ntW595wL5x4/EVyBZX0ZK6tr6xubla3q9s7u3r55cNhRcSopa9NYxLLnE8UEj1gbOAjWSyQjoS9Y1x/fFXp3wqTicdSCacLckAwjHnBKQK8889gZEcickMDID7JennvZjZ0/tjyzZtWtOfAysUtSQyWanvnpDGKahiwCKohSfdtKwM2IBE4Fy6tOqlhC6JgMWX8w4YmKSMiUmz3Nf8jxWRBLDCOG5/Nve0ZCpaahrz1FTLWoFcv/tH4KwbWb8ShJgUVUW7QWpAJDjIsq8IBLRkFMNSFUch0U0xGRhIIurKobsBf/XSadi7pt1e2Hy1rjtuyigk7QKTpHNrpCDXSPmqiNKMrRC5qhN+PZeDVmxvuPdcUob47QHxgf3yf+law=</latexit><latexit sha1_base64="zpqYMpftmmZUKh3SzKlp8tCs8CU=">AAAB/XicbVDLSsNAFJ34rPUVdeHCzWARXJVEBMVV0Y3LCn1BE8NkOmmHTh7M3BRLCH6MuKtu/QzX/o2TmoW2ntW595wL5x4/EVyBZX0ZK6tr6xubla3q9s7u3r55cNhRcSopa9NYxLLnE8UEj1gbOAjWSyQjoS9Y1x/fFXp3wqTicdSCacLckAwjHnBKQK8889gZEcickMDID7JennvZjZ0/tjyzZtWtOfAysUtSQyWanvnpDGKahiwCKohSfdtKwM2IBE4Fy6tOqlhC6JgMWX8w4YmKSMiUmz3Nf8jxWRBLDCOG5/Nve0ZCpaahrz1FTLWoFcv/tH4KwbWb8ShJgUVUW7QWpAJDjIsq8IBLRkFMNSFUch0U0xGRhIIurKobsBf/XSadi7pt1e2Hy1rjtuyigk7QKTpHNrpCDXSPmqiNKMrRC5qhN+PZeDVmxvuPdcUob47QHxgf3yf+law=</latexit><latexit sha1_base64="zpqYMpftmmZUKh3SzKlp8tCs8CU=">AAAB/XicbVDLSsNAFJ34rPUVdeHCzWARXJVEBMVV0Y3LCn1BE8NkOmmHTh7M3BRLCH6MuKtu/QzX/o2TmoW2ntW595wL5x4/EVyBZX0ZK6tr6xubla3q9s7u3r55cNhRcSopa9NYxLLnE8UEj1gbOAjWSyQjoS9Y1x/fFXp3wqTicdSCacLckAwjHnBKQK8889gZEcickMDID7JennvZjZ0/tjyzZtWtOfAysUtSQyWanvnpDGKahiwCKohSfdtKwM2IBE4Fy6tOqlhC6JgMWX8w4YmKSMiUmz3Nf8jxWRBLDCOG5/Nve0ZCpaahrz1FTLWoFcv/tH4KwbWb8ShJgUVUW7QWpAJDjIsq8IBLRkFMNSFUch0U0xGRhIIurKobsBf/XSadi7pt1e2Hy1rjtuyigk7QKTpHNrpCDXSPmqiNKMrRC5qhN+PZeDVmxvuPdcUob47QHxgf3yf+law=</latexit>

for k = 1, 2..., K
<latexit sha1_base64="u0+PSpDaSo3Vcivyr2n94IaTGg0=">AAACAnicbVBNSwJRFH1jX2ZfVstaPJKghQwzEtQmkNoEbQxSAx3kzfOOPnzzwXt3RBncRD8m2lnb/kPr/k0z5qK0szr3nnPh3ONGUmi0rC8jt7K6tr6R3yxsbe/s7hX3Dxo6jBWHOg9lqB5dpkGKAOooUMJjpID5roSmO7jJ9OYQlBZh8IDjCByf9QLhCc4wXXWKx22EEbpe4oWKTuiAXlG7TCumaZbpXadYskxrBrpM7DkpkTlqneJnuxvy2IcAuWRat2wrQidhCgWXMCm0Yw0R4wPWg1Z3KCIdMB+0k4xmj0zoaZYC+0Bn8297wnytx76benyGfb2oZcv/tFaM3qWTiCCKEQKeWlLNiyXFkGZ90K5QwFGOU8K4EmlQyvtMMY5pa4W0AXvx32XSqJi2Zdr356Xq9byLPDkiJ+SM2OSCVMktqZE64eSJvJApeTOejVdjarz/WHPG/OaQ/IHx8Q15N5Tb</latexit><latexit sha1_base64="u0+PSpDaSo3Vcivyr2n94IaTGg0=">AAACAnicbVBNSwJRFH1jX2ZfVstaPJKghQwzEtQmkNoEbQxSAx3kzfOOPnzzwXt3RBncRD8m2lnb/kPr/k0z5qK0szr3nnPh3ONGUmi0rC8jt7K6tr6R3yxsbe/s7hX3Dxo6jBWHOg9lqB5dpkGKAOooUMJjpID5roSmO7jJ9OYQlBZh8IDjCByf9QLhCc4wXXWKx22EEbpe4oWKTuiAXlG7TCumaZbpXadYskxrBrpM7DkpkTlqneJnuxvy2IcAuWRat2wrQidhCgWXMCm0Yw0R4wPWg1Z3KCIdMB+0k4xmj0zoaZYC+0Bn8297wnytx76benyGfb2oZcv/tFaM3qWTiCCKEQKeWlLNiyXFkGZ90K5QwFGOU8K4EmlQyvtMMY5pa4W0AXvx32XSqJi2Zdr356Xq9byLPDkiJ+SM2OSCVMktqZE64eSJvJApeTOejVdjarz/WHPG/OaQ/IHx8Q15N5Tb</latexit><latexit sha1_base64="u0+PSpDaSo3Vcivyr2n94IaTGg0=">AAACAnicbVBNSwJRFH1jX2ZfVstaPJKghQwzEtQmkNoEbQxSAx3kzfOOPnzzwXt3RBncRD8m2lnb/kPr/k0z5qK0szr3nnPh3ONGUmi0rC8jt7K6tr6R3yxsbe/s7hX3Dxo6jBWHOg9lqB5dpkGKAOooUMJjpID5roSmO7jJ9OYQlBZh8IDjCByf9QLhCc4wXXWKx22EEbpe4oWKTuiAXlG7TCumaZbpXadYskxrBrpM7DkpkTlqneJnuxvy2IcAuWRat2wrQidhCgWXMCm0Yw0R4wPWg1Z3KCIdMB+0k4xmj0zoaZYC+0Bn8297wnytx76benyGfb2oZcv/tFaM3qWTiCCKEQKeWlLNiyXFkGZ90K5QwFGOU8K4EmlQyvtMMY5pa4W0AXvx32XSqJi2Zdr356Xq9byLPDkiJ+SM2OSCVMktqZE64eSJvJApeTOejVdjarz/WHPG/OaQ/IHx8Q15N5Tb</latexit>

Batch X̂i1,...,im
<latexit sha1_base64="66iZcAMlIB5LPUKdIiZmSltcgGc=">AAACFHicbVDLSsNAFJ34tr6qLt0MFsFFCYkIuiy6calgH9CUMJneNIOTBzM3pSXkL8SPEXfqVtf+jUnNQlvP6tx7zoVzj5dIodGyvoyl5ZXVtfWNzdrW9s7uXn3/oKPjVHFo81jGqucxDVJE0EaBEnqJAhZ6Errew3Wpd8egtIije5wmMAjZKBK+4AyLlVs3HYQJZlcMeUBz6gQMMydkGHh+1stzNxOu3aSmaTapcMPcrTcs05qBLhK7Ig1S4datfzrDmKchRMgl07pvWwkOMqZQcAl5zUk1JIw/sBH0h2OR6IiFoAfZZPZaTk/8WFEMgM7m3/aMhVpPQ6/wlHn1vFYu/9P6KfqXg0xESYoQ8cJSaH4qKca0bIgOhQKOcloQxpUoglIeMMU4Fj3Wigbs+X8XSefMtC3TvjtvtK6qLjbIETkmp8QmF6RFbsgtaRNOHskzeSVvxpPxYrwa7z/WJaO6OSR/YHx8A9HFngA=</latexit><latexit sha1_base64="66iZcAMlIB5LPUKdIiZmSltcgGc=">AAACFHicbVDLSsNAFJ34tr6qLt0MFsFFCYkIuiy6calgH9CUMJneNIOTBzM3pSXkL8SPEXfqVtf+jUnNQlvP6tx7zoVzj5dIodGyvoyl5ZXVtfWNzdrW9s7uXn3/oKPjVHFo81jGqucxDVJE0EaBEnqJAhZ6Errew3Wpd8egtIije5wmMAjZKBK+4AyLlVs3HYQJZlcMeUBz6gQMMydkGHh+1stzNxOu3aSmaTapcMPcrTcs05qBLhK7Ig1S4datfzrDmKchRMgl07pvWwkOMqZQcAl5zUk1JIw/sBH0h2OR6IiFoAfZZPZaTk/8WFEMgM7m3/aMhVpPQ6/wlHn1vFYu/9P6KfqXg0xESYoQ8cJSaH4qKca0bIgOhQKOcloQxpUoglIeMMU4Fj3Wigbs+X8XSefMtC3TvjtvtK6qLjbIETkmp8QmF6RFbsgtaRNOHskzeSVvxpPxYrwa7z/WJaO6OSR/YHx8A9HFngA=</latexit><latexit sha1_base64="66iZcAMlIB5LPUKdIiZmSltcgGc=">AAACFHicbVDLSsNAFJ34tr6qLt0MFsFFCYkIuiy6calgH9CUMJneNIOTBzM3pSXkL8SPEXfqVtf+jUnNQlvP6tx7zoVzj5dIodGyvoyl5ZXVtfWNzdrW9s7uXn3/oKPjVHFo81jGqucxDVJE0EaBEnqJAhZ6Errew3Wpd8egtIije5wmMAjZKBK+4AyLlVs3HYQJZlcMeUBz6gQMMydkGHh+1stzNxOu3aSmaTapcMPcrTcs05qBLhK7Ig1S4datfzrDmKchRMgl07pvWwkOMqZQcAl5zUk1JIw/sBH0h2OR6IiFoAfZZPZaTk/8WFEMgM7m3/aMhVpPQ6/wlHn1vFYu/9P6KfqXg0xESYoQ8cJSaH4qKca0bIgOhQKOcloQxpUoglIeMMU4Fj3Wigbs+X8XSefMtC3TvjtvtK6qLjbIETkmp8QmF6RFbsgtaRNOHskzeSVvxpPxYrwa7z/WJaO6OSR/YHx8A9HFngA=</latexit>

Batch X̂j1,...,jm
<latexit sha1_base64="bmtYb9x9lj1EK7olP79f1OyxpM4=">AAACFHicbVDLSsNAFJ3Ud31VXboZLIILCYkIuix141LB2kITwmR600w7eTBzI5aQvxA/RtypW137N6Y1C62e1bn3nAvnHj+VQqNlfRq1hcWl5ZXVtfr6xubWdmNn91YnmeLQ4YlMVM9nGqSIoYMCJfRSBSzyJXT98cVU796B0iKJb3CSghuxYSwCwRmWK69hOgj3mLcZ8pAW1AkZ5k7EMPSDvFcUXj7y7GNqmuYxHXlR4TWalmnNQP8SuyJNUuHKa3w4g4RnEcTIJdO6b1spujlTKLiEou5kGlLGx2wI/cGdSHXMItBufj97raCHQaIohkBn8097ziKtJ5FfeqZ59bw2Xf6n9TMMzt1cxGmGEPPSUmpBJikmdNoQHQgFHOWkJIwrUQalPGSKcSx7rJcN2PP//iW3J6Ztmfb1abPVrrpYJfvkgBwRm5yRFrkkV6RDOHkgT+SFvBqPxrPxYrx9W2tGdbNHfsF4/wLU154C</latexit><latexit sha1_base64="bmtYb9x9lj1EK7olP79f1OyxpM4=">AAACFHicbVDLSsNAFJ3Ud31VXboZLIILCYkIuix141LB2kITwmR600w7eTBzI5aQvxA/RtypW137N6Y1C62e1bn3nAvnHj+VQqNlfRq1hcWl5ZXVtfr6xubWdmNn91YnmeLQ4YlMVM9nGqSIoYMCJfRSBSzyJXT98cVU796B0iKJb3CSghuxYSwCwRmWK69hOgj3mLcZ8pAW1AkZ5k7EMPSDvFcUXj7y7GNqmuYxHXlR4TWalmnNQP8SuyJNUuHKa3w4g4RnEcTIJdO6b1spujlTKLiEou5kGlLGx2wI/cGdSHXMItBufj97raCHQaIohkBn8097ziKtJ5FfeqZ59bw2Xf6n9TMMzt1cxGmGEPPSUmpBJikmdNoQHQgFHOWkJIwrUQalPGSKcSx7rJcN2PP//iW3J6Ztmfb1abPVrrpYJfvkgBwRm5yRFrkkV6RDOHkgT+SFvBqPxrPxYrx9W2tGdbNHfsF4/wLU154C</latexit><latexit sha1_base64="bmtYb9x9lj1EK7olP79f1OyxpM4=">AAACFHicbVDLSsNAFJ3Ud31VXboZLIILCYkIuix141LB2kITwmR600w7eTBzI5aQvxA/RtypW137N6Y1C62e1bn3nAvnHj+VQqNlfRq1hcWl5ZXVtfr6xubWdmNn91YnmeLQ4YlMVM9nGqSIoYMCJfRSBSzyJXT98cVU796B0iKJb3CSghuxYSwCwRmWK69hOgj3mLcZ8pAW1AkZ5k7EMPSDvFcUXj7y7GNqmuYxHXlR4TWalmnNQP8SuyJNUuHKa3w4g4RnEcTIJdO6b1spujlTKLiEou5kGlLGx2wI/cGdSHXMItBufj97raCHQaIohkBn8097ziKtJ5FfeqZ59bw2Xf6n9TMMzt1cxGmGEPPSUmpBJikmdNoQHQgFHOWkJIwrUQalPGSKcSx7rJcN2PP//iW3J6Ztmfb1abPVrrpYJfvkgBwRm5yRFrkkV6RDOHkgT+SFvBqPxrPxYrx9W2tGdbNHfsF4/wLU154C</latexit>

X̂T
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Figure 5.1: Round-robin imputation: illustration of the imputation of the j-th variable in
the inner-most loop of Algorithm 7.

Round-robin imputation. A remaining unaddressed point in Algorithm 6 is how to
perform the “X̂← Imputer(X̂t,Ω,Θ)” step in the presence of missing values. A classical
method is to perform imputations over variables in a round-robin fashion, i.e. to iteratively
predict missing coordinates using other coordinates as features in a cyclical manner. The
main advantage of this method is that it decouples variables being used as inputs and those
being imputed. This requires having d sets of parameter (θj)1≤j≤d, one for each variable,
where each θj refers to the parameters used to to predict the j-th variable. The j-th
variable is iteratively imputed using the d− 1 remaining variables, according to the chosen
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model with parameter θj : θ̂j is first fitted (using e.g. regression or Bayesian methods),
then the j-th variable is imputed. The algorithm then moves to the next variable j + 1,
in a cyclical manner. This round-robin method is implemented for instance in R’s mice
package [van Buuren and Groothuis-Oudshoorn, 2011] or in the IterativeImputer method
of the scikit-learn [Pedregosa et al., 2011] package. When using the Sinkhorn batch loss
eq. (5.5) to fit the imputers, this procedure can be seen as a particular case of Algorithm 6
where the imputer parameter Θ is separable with respect to each variable (x:j)1≤j≤d, i.e. Θ
consists in d sets of parameter (θj)1≤j≤d.

Making this round-robin imputation explicit in the step “X̂← Imputer(X̂t,Ω,Θ)” of
Algorithm 6 leads to Algorithm 7. In Algorithm 7, an imputation X̂t, t = 0, ..., tmax is

Algorithm 7 Round-Robin Sinkhorn Imputation
Input: X ∈ Rn×d, Ω ∈ {0, 1}n×d, Imputer(·, ·, ·), Θ0, ε > 0, n ≥ m > 0,

X̂0 ← same initialization as in Algorithm 5
(θ̂1, ..., θ̂d)← Θ0

for t = 1, 2, ..., tmax do
for j = 1, 2, ..., d do
for k = 1, 2, ...,K do

X̂:j ← Imputer(X̂t
:−j ,Ω:j , θ̂j)

Sample two sets K and L of m indices
L ← Sε(µm(X̂K), µm(X̂L))
∇θjL ← AutoDiff(L)

θ̂j ← θ̂j − αAdam(∇θjL)
end for
X̂t

:j ← Imputer(X̂t
:−j ,Ω:j , θ̂j)

end for
X̂t+1 ← X̂t

end for
Output: Imputations X̂tmax , Imputer(·, ·, Θ̂)

updated starting from an initial guess X̂0. The algorithm then consists in three nested
loops. (i) The inner-most loop is dedicated to gradient-based updates of the parameter θ̂j ,
as illustrated in Figure 5.1. Once this inner-most loop is finished, the j-th variable of X̂t is
updated using the last update of θ̂j . (ii) This is performed cyclically over all variables of
X̂t, yielding X̂t+1. (iii) This fitting-and-imputation procedure over all variables is repeated
until convergence, or until a given number of iterations is reached.

In practice, several improvements on the generic Algorithms 6 and 7 can be implemented:

1. To better estimate Equation (5.5), one can sample several pairs of batches (instead
of a single one) and define L as the average of Sε divergences.

2. For Algorithm 7 in a MCAR setting, instead of sampling in each pair two batches
from X̂, one of the two batches can be sampled with no missing value on the j-th
variable, and the other with missing values on the j-th variable. This allows the
imputations for the j-th variable to be fitted on actual non-missing values. This helps
ensuring that the imputations for the j-th variable will have a marginal distribution
close to that of non-missing values.

3. The order in which the variables are imputed can be adapted. A simple heuristic is
to impute variables in increasing order of missing values.

4. During training, the loss can be hard to monitor due to the high variance induced by
estimating Equation (5.5) from a few pairs of batches. Therefore, it can be useful to
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define a validation set on which fictional additional missing values are sampled to
monitor the training of the algorithm, according to the desired accuracy score (e.g.
MAE, RMSE or W2 as in Section 4).

Note that item 2 is a priori only legitimate in a MCAR setting. Indeed, under MAR or
MNAR assumptions, the distribution of non-missing data is in general not equal to the
original (unknown) distribution of missing data.1 Finally, the use of Adam [Kingma and
Ba, 2014] compared to RMSprop in Algorithm 5 is motivated by empirical performance,
but does not have a crucial impact on performance. It was observed however that the
quality of the imputations given by Algorithm 5 seems to decrease when gradient updates
with momentum are used.

4 Experiments

Figure 5.2: (30% MCAR) Imputation methods on 23 datasets from the UCI repository
(Table 5.1). Sinkhorn denotes Algorithm 5 and Linear RR, MLP RR the two instances of
Algorithm 7 precedently described. 30% of the values are missing MCAR. All methods
are evaluated on 30 random missing values draws. Error bars correspond to ± 1 std. For
readability we display scaled mean W 2

2 , i.e. for each dataset we renormalize the results by
the maximum W 2

2 . For some datasets W2 results are not displayed due to their large size,
which makes evaluating the unregularized W2 distance costly.

Baselines. We compare our methods to three baselines:

(i) mean is the coordinate-wise mean imputation;
1Consider as an example census data in which low/high income people are more likely to fail to answer

an income survey than medium income people.
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(ii) ice (imputation by chained equations) consists in (iterative) imputation using
conditional expectation. Here, we use scikit-learn’s [Pedregosa et al., 2011]
iterativeImputer method, which is based on mice [van Buuren and Groothuis-
Oudshoorn, 2011]. This is one of the most popular methods of imputation as it
provides empirically good imputations in many scenario and requires little tuning;

(iii) softimpute [Hastie et al., 2015] performs missing values imputation using iterative
soft-thresholded SVD’s. This method is based on a low-rank assumption for the data
and is justified by the fact that many large matrices are well approximated by a
low-rank structure [Udell and Townsend, 2019].

Deep learning methods. Additionally, we compare our methods to three DL-based
methods:

(iv) MIWAE [Mattei and Frellsen, 2019] fits a deep latent variable model (DLVM) [Kingma
and Welling, 2014], by optimizing a version of the importance weighted autoencoder
(IWAE) bound [Burda et al., 2016] adapted to missing data;

(v) GAIN [Yoon et al., 2018] is an adaptation of generative adversarial networks
(GAN) [Goodfellow et al., 2014] to missing data imputation;

(vi) VAEAC [Ivanov et al., 2019] are VAEs with easily approximable conditionals that
allow to handle missing data.

Transport methods. Three variants of the proposed methods are evaluated:

(vii) Sinkhorn designates the direct non-parametric imputation method detailed in Algo-
rithm 5.

For Algorithm 7, two classes of imputers are considered:

(viii) Linear RR corresponds to Algorithm 7 where for 1 ≤ j ≤ d, Imputer(·, θj) is a linear
model w.r.t. the d− 1 other variables with weights and biases given by θj . This is
similar to mice or IterativeImputer, but fitted with the OT loss eq. (5.5);

(ix) MLP RR denotes Algorithm 7 with shallow Multi-Layer Perceptrons (MLP) as
imputers. These MLP’s have the following architecture: (i) a first (d− 1)× 2(d− 1)
layer followed by a ReLU layer then (ii) a 2(d− 1)× (d− 1) layer followed by a ReLU
layer and finally (iii) a (d− 1)× 1 linear layer. All linear layers have bias terms. Each
Imputer(·, θj), 1 ≤ j ≤ d is one such MLP with a different set of weights θj .

Toy experiments. In Figure 5.3, we generate two-dimensional datasets with strong
structures, such as an S-shape, half-moon(s), or concentric circles. A 20% missing rate is
introduced (void rows are discarded), and imputations performed using Algorithm 5 or the
ice method are compared to the ground truth dataset. While the ice method is not able to
catch the non-linear structure of the distributions at all, Sinkhorn performs efficiently by
imputing faithfully to the underlying complex data structure (despite the two half-moons
and the S-shape being quite challenging). This is remarkable, since Algorithm 5 does not
rely on any parametric assumption for the data. This underlines in a low-dimensional
setting the flexibility of the proposed method. Finally, note that the trailing points which
can be observed for the S shape or the two moons shape come from the fact that Algorithm 5
was used as it is, i.e. with pairs of batches both containing missing values, even though
these toy examples would have allowed to use batches without missing values. In that case,
we obtain imputations that are visually indistinguishable from the ground truth.
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4.1 Large-scale experimental setup
Ground truth

No NA
1 NA

ICE imputation Sinkhorn imputation

Ground truth
No NA
1 NA

Scikit imputation Sinkhorn imputation

Ground truth

No NA
1 NA

Scikit imputation Sinkhorn imputation

Ground truth

No NA
1 NA

Scikit imputation Sinkhorn imputation

Figure 5.3: Toy examples: 20 % missing values
(MCAR) on toy datasets. Blue points have no
missing values, orange points have one miss-
ing value on either coordinate. ice outputs
conditional expectation imputations, which
are irrelevant due to the high non-linearity of
these examples. Since algorithm 5 does not
assume a parametric form for the imputations,
it is able to satisfyingly impute missing values.

We evaluate each method on 23 datasets
from the UCI machine learning repository2

(see Table 5.1) with varying proportions
of missing data and different missing data
mechanisms. These datasets only contain
quantitative features. Prior to running the
experiments, the data is whitened (i.e. cen-
tered and scaled to variable-wise unit vari-
ance). For each dataset, all methods are
evaluated on 30 different draws of missing
values masks. For all Sinkhorn-based impu-
tation methods, the regularization param-
eter ε is set to 5% of the median distance
between initialization values with no further
dataset-dependent tuning. If the dataset
has more than 256 points, the batch size
is fixed to 128, otherwise to 2b

n
2
c where n

is the size of the dataset. The noise pa-
rameter η in Algorithm 5 is fixed to 0.1.
For Sinkhorn round-robin models (Linear
RR and MLP RR), the maximum num-
ber of cycles is 10, 10 pairs of batches are
sampled per gradient update, and an `2-
weight regularization of magnitude 10−5 is
applied during training. For all 3 Sinkhorn-
based methods, we use gradient methods
with adaptive step sizes as per algorithms 5
and 7, with an initial step size fixed to 10−2.
For softimpute, the hyperparameter is se-
lected at each run through cross-validation
on a small grid. This CV is performed by
sampling additional missing values. For DL-
based methods, the implementations pro-
vided in open-access by the authors were
used3,4,5, with the hyperparameter settings recommended in the corresponding papers. In
particular, for GAIN the α parameter is selected using cross-validation. GPUs are used for
Sinkhorn and deep learning methods. The code to reproduce the experiments is available
at https://github.com/BorisMuzellec/MissingDataOT.

Missing value generation mechanisms. The implementation of a MCAR mechanism
is straightfoward. On the contrary, many different mechanisms can lead to a MAR or
MNAR setting. We here describe those used in our experiments. In the MCAR setting,
each value is masked according to the realization of a Bernoulli random variable with a
fixed parameter. In the MAR setting, for each experiment, a fixed subset of variables that
cannot have missing values is sampled. Then, the remaining variables have missing values
according to a logistic model with random weights, which takes the non-missing variables

2https://archive.ics.uci.edu/ml/index.php
3https://github.com/pamattei/miwae
4https://github.com/jsyoon0823/GAIN
5https://github.com/tigvarts/vaeac

https://github.com/BorisMuzellec/MissingDataOT
https://archive.ics.uci.edu/ml/index.php
https://github.com/pamattei/miwae
https://github.com/jsyoon0823/GAIN
https://github.com/tigvarts/vaeac
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Table 5.1: Summary of datasets

dataset n d

airfoil_self_noise 1503 5
blood_transfusion 748 4
breast_cancer_diagnostic 569 30
california 20640 8
climate_model_crashes 540 18
concrete_compression 1030 7
concrete_slump 103 7
connectionist_bench_sonar 208 60
connectionist_bench_vowel 990 10
ecoli 336 7
glass 214 9
ionosphere 351 34
iris 150 4
libras 360 90
parkinsons 195 23
planning_relax 182 12
qsar_biodegradation 1055 41
seeds 210 7
wine 178 13
wine_quality_red 1599 10
wine_quality_white 4898 11
yacht_hydrodynamics 308 6
yeast 1484 8

as inputs. A bias term is fitted using line search to attain the desired proportion of missing
values. Finally, two different mechanisms are implemented in the MNAR setting. The
first is identical to the previously described MAR mechanism, but the inputs of the logistic
model are then masked by a MCAR mechanism. Hence, the logistic model’s outcome now
depends on potentially missing values. The second mechanism, ’self masked’, samples
a subset of variables whose values in the lower and upper p-th percentiles are masked
according to a Bernoulli random variable, and the values in-between are left not missing.
As detailed in the Section 5, MCAR experiments were performed with 10%, 30% and 50%
missing rates, while MAR and both MNAR settings (quantile and logistic masking) were
evaluated with a 30% missing rate.

Metrics. Imputation methods are evaluated according to two “pointwise” metrics: mean
absolute error (MAE) and root mean square error (RMSE); and one metric on distributions:
the squared Wasserstein distance between empirical distributions on points with missing
values. Let X ∈ Rn×d be a dataset with missing values. When (i, j) spots a missing entry,
recall that x̂ij denotes the corresponding imputation, and let us note xtrue

ij the ground truth.

Let m0
def
= #{(i, j), ωij = 0} and m1

def
= #{i : ∃j, ωij = 0}} respectively denote the total

number of missing values and the number of data points with at least one missing value.
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Figure 5.4: (30% MNAR) Imputation methods on 23 datasets from the UCI repository
(Table 5.1). Values are missing MNAR according to the logistic mechanism described
in Section 4, with 30% variables used as inputs of a logistic masking model for the 70%
remaining variables. 30% of those input variables are then masked at random. Hence, all
variables have 30% missing values. All methods are evaluated on the same 30 random
missing values draws. Error bars correspond to ± 1 std. For readability we display scaled
mean W 2

2 , i.e. for each dataset we renormalize the results by the maximum W 2
2 . For some

datasets W2 results are not displayed due to their large size, which makes evaluating the
unregularized W2 distance costly.

Set M1
def
= {i : ∃j, ωij = 0}. We define MAE, RMSE and W2 imputation metrics as

1
m0

∑

(i,j):ωij=0

|xtrue
i,j − x̂ij |, (MAE)

√
1
m0

∑

(i,j):ωij=0

(xtrue
i,j − x̂ij)2, (RMSE)

W 2
2

(
µm1(X̂M1), µm1(X

(true)
M1

)
)
. (W2)

Results. The complete results of the experiments are reported in Section 5. In Figure 5.2
and Figure 5.4, the proposed methods are respectively compared to baselines and Deep
Learning (DL) methods in a MCAR and a logistic masking MNAR setting with 30% missing
data. As can be seen from Figure 5.2, the linear round-robin model matches or out-performs
scikit’s iterative imputer (ice) on MAE and RMSE scores for most datasets. Since both
methods are based on the same cyclical linear imputation model but with different loss
functions, this shows that the batched Sinkhorn loss in Equation (5.5) is well-adapted to
imputation with parametric models. Comparison with DL methods (Figure 5.4) shows that
the proposed OT-based methods consistently outperform DL-based methods, and have the
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Figure 5.5: (OOS) Out of sample imputation: 70% of the data is used for training (filled
bars) and 30 % for testing with fixed parameters (dotted bars). 30% of the values are
missing MCAR accross both training and testing sets.

additional benefit of having a lower variance in their results overall. Interestingly, while the
MAE and RMSE scores of the round-robin MLP model are comparable to that of the linear
RR, its W2 scores are generally better. This suggests that more powerful base imputer
models lead to better W2 scores, from which one can conclude that Equation (5.5) is a
good proxy for optimizing the unavailable Equation (5.1) score, and that Algorithm 7 is
efficient at doing so. Furthermore, one can observe that the direct imputation method is
very competitive over all data and metrics and is in general the best performing OT-based
method, as could be expected from the fact that its imputation model is not restricted by a
parametric assumption. This favorable behaviour tends to be exacerbated with a growing
proportion of missing data, see Figure 5.9 in Section 5.

MAR and MNAR. Figure 5.4 above and Figures 5.10 to 5.12 in Section 5 display
the results of our experiments in MAR and MNAR settings, and show that the proposed
methods perform well and are robust to difficult missingness mechanisms. This is remarkable,
as the proposed methods do not attempt to model those mechanisms. Finally, note that the
few datasets on which the proposed methods do not perform as well as baselines – namely
libras and to a smaller extent planning_relax – remain consistently the same across
all missingness mechanisms and missing rates. This suggests that this behavior is due
to the particular structure of those datasets, rather than to the missingness mechanisms
themselves.

Out-of-sample imputation. As mentioned in Section 3, a key benefit of fitting a
parametric imputing model with algorithms 6 and 7 is that the resulting model can then
be used to impute missing values in out-of-sample (OOS) data. In Figure 5.5, we evaluate
the Linear RR and MLP RR models in an OOS imputation experiment. We compare the
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training and OOS MAE, RMSE and OT scores on a collection of datasets selected to have
a sufficient number of points. At each run, we randomly sample 70% of the data to be used
for training, and the remaining 30% to evaluate OOS imputation. 30% of the values are
missing MCAR, uniformly over training and testing sets. Out of the methods presented
earlier on, we keep those that allow OOS: for the ice, Linear RR and MLP RR methods,
OOS imputation is simply performed using the round-robin scheme without further fitting
of the parameters on the new data. For the mean baseline, missing values in the testing
data are imputed using mean observed values from the training data. Figure 5.5 confirms
the stability at testing time of the good performance of Linear RR and MLP RR.

Conclusion

We have shown in this chapter how OT metrics could be used to define a relevant loss for
missing data imputation. This loss corresponds to the expectation of Sinkhorn divergences
between randomly sampled batches. To minimize it, two classes of algorithms were proposed:
one that freely estimates one parameter per imputed value, and one that fits a parametric
model. The former class does not rely on making parametric assumptions on the underlying
data distribution, and can be used in a very wide range of settings. On the other hand,
after training, the latter class allows out-of-sample imputation. To make parametric models
trainable, the classical round-robin mechanism was used. Experiments on a variety of
datasets, and for numerous missing value settings (MCAR, MAR and MNAR with varying
missing values proportions) showed that the proposed models are very competitive, even
compared to recent methods based on deep learning. These results confirmed that our
loss is a good optimizable proxy for imputation metrics. Future work includes further
theoretical study of our loss function (5.5) within the OT framework.
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5 Complementary Experimental Results

This appendix contains a full account of our experimental results. These results correspond
to the missing value mechanisms described in Section 4:

1. 10% MCAR (Figure 5.7), 30% MCAR (Figure 5.8) and 50% MCAR (Figure 5.9);

2. 30% MAR on 70% of the variables with a logistic masking model (Figure 5.10);

3. 30%MNAR generated with a logistic masking model, whose inputs are then themselves
masked (Figure 5.11);

4. 30% MNAR on 30% of the variables, generated by censoring upper and lower quartiles
(Figure 5.12).

These experiments follow the setup described in Section 4. In all the following figures,
error bars correspond to ±1 standard deviation across the 30 runs performed on each
dataset. For some datasets, the W2 score is not represented: this is due to their large size,
which makes computing unregularized OT computationally intensive.

The results show that the proposed methods, Algorithm 5 and Algorithm 7 with linear
and shallow MLP imputers, are very competitive compared to state-of-the-art methods,
including those based on deep learning [Mattei and Frellsen, 2019, Yoon et al., 2018, Ivanov
et al., 2019], in a wide range of missing data regimes.

Runtimes. Figure 5.6 represents the average runtimes of the methods evaluated in
Figure 5.11. These runtimes show that Algorithm 5 has computational running times
on par with VAEAC, and faster than the two remaining DL-based methods (GAIN and
MIWAE). Round-robin methods are the slowest overall, but the base imputer model
being used seems to have nearly no impact on runtimes. This is due to the fact that
the computational bottleneck of the proposed methods is the number of Sinkhorn batch
divergences that are computed. This number can be made lower by e.g. reducing the
number of gradient steps performed for each variable (parameter K in algorithm 7), or
the number of cycles tmax. This fact suggests that more complex models could be used in
round-robin imputation without much additional computational cost.
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Figure 5.6: Average runtimes (in seconds, over 30 runs and 23 datasets) for the experiment
described in fig. 5.11. Note that these times are indicative, as runs where randomly assigned
to different GPU models, which may have an impact on runtimes.
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Figure 5.7: (10 % MCAR)
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Figure 5.8: (30 % MCAR)
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Figure 5.9: (50 % MCAR)
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Figure 5.10: (30 % MAR)
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Figure 5.11: (30 % MNAR, logistic masking)
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Figure 5.12: (30 % MNAR, quantile masking)



Conclusion

In this thesis, we leveraged the specificities of variants of OT relying on closed forms or
regularization to provide new theoretical results lying at their intersections, and to carry
out applications to machine learning problems. More precisely, we proposed contributions
lying at the the intersection of the Bures-Wasserstein geometry and either projected OT or
regularized OT, and an application of entropy-regularized OT to missing data imputation,
which we summarize below.

Theoretical contributions.

In Chapter 3, we showed that projected OT maps could be extrapolated to the whole
space, and that the resulting plans are characterized by their disintegration on the graph
of the original lower-dimensional map. Among this class of subspace-optimal plans, we
focused on two specific instances motivated by particular properties: Monge-Independent
couplings can be obtained as the infinite-samples limit of discrete subspace-optimal plans
between empirical measures, and Monge-Knothe plans generalize the Knothe-Rosenblatt
transport to k-dimensional subspaces, with similar properties. Making links with the
Bures-Wasserstein geometry, closed-form expressions for MI, MK and KR transports
between Gaussian measures were proved. Those results complement the recent literature
on subspace-projected OT [Rabin et al., 2011, Bonneel et al., 2015, Paty and Cuturi, 2019]
by providing maps and couplings in addition to the discrepencies between the original
measures.

In Chapter 4, we interfaced between the Bures-Wasserstein geometry and entropy-
regularized OT by providing closed-form expressions for entropic OT and unbalanced
entropic OT with a quadratic cost between Gaussian measures. These results constitute the
first non-trivial closed-form expressions for entropic OT. We showed that entropic balanced
(resp. unbalanced) OT between Gaussian measures on Rd can be written as a balanced
(resp. unbalanced) Gaussian measure on Rd × Rd. Next, we proved that the debiased
barycenters between Gaussian measures satisfy a fixed-point equation that generalizes
that of [Agueh and Carlier, 2011]. The proof of these results relies on an adaptation of
Sinkhorn’s algorithm to quadratic dual potentials, which yields a fixed-point equation that
can be put in parallel with the discrete algorithm. Those closed forms will provide a test
case for the analysis of entropic OT and Sinkhorn’s algorithm, and provide a principled
way to circumvent the non-differentiability issues that may arise when the Bures distance
is taken between singular covariance matrices. Finally, this first closed form for unbalanced
OT allows to get a better understanding of the trade-off between transport and mass
creation/deletion.

Applications and numerical tools.

Variants of OT geometries that admit closed forms or tractable computation were put to
use in machine learning contexts, developing appropriate numerical tools when required.
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In Chapter 2, the Bures-Wasserstein geometry was leveraged to extend the traditional
embeddings as points in Rd to elliptically-contoured probability distributions. Our work
extends on recent takes on probabilistic embeddings [Vilnis and McCallum, 2015, Athi-
waratkun and Wilson, 2017] that were restricted to diagonal covariance matrices, hindered
by numerical constraints due to the choice of the KL geometry. Drawing links between
a LLT factorization and the Riemannian structure of the Bures metric, we proposed nu-
merical tools and practical guidelines for gradient descent on the Bures distance, relying
notably on the Newton-Schulz algorithm to compute Monge maps and inverse maps, and
on the memorization of those maps instead of automatic differentiation. By minimizing
skip-gram losses [Mikolov et al., 2013a] or hinge losses [Vilnis and McCallum, 2015] on
large corpora and replacing Euclidean dot products with the Bures fidelity, we obtained
word embeddings that are competitive with then state-of-the-art methods on similarity,
entailment and hypernymy benchmarks. Further, in Chapter 3 we showed how subspace
projection on the principal directions of a given elliptical embedding’s covariance can be
used to influence the similarity results of polysemous words.

Finally, in Chapter 5 we showed how optimal transport can be used as a criterion for
missing data imputation, with the intuitive underlying idea that two random batches from
the same dataset should have similar distributions. This criterion can be encoded as a
loss function using an OT-based discrepancy. In our work, we chose Sinkhorn divergences
as they inherit from the smoothness and computational properties of entropic OT while
defining positive definite divergences. We proposed two algorithms for minimizing this loss,
the first and most flexible not requiring any parametric assumption on the data distribution,
and the second allowing to fit parametric models according to our OT batch loss through a
round-robin scheme. Extensive experiments with different missing data mechanisms and
missing rates showed that our OT criterion and algorithms are very competitive against
state-of-the-art methods, including those based on deep learning.

Perspectives

Taking a step back, a common denominator between Bures-Wasserstein transport, subspace-
optimal transport, Knothe-Rosenblatt transport and (unbalanced) Gaussian entropic trans-
port is that they leverage some notion of stability to yield closed-form optimal couplings.
Indeed, optimal couplings between Gaussian measures are Gaussian distributions themselves
in unregularized, entropy-regularized and unbalanced entropy-regularized settings, Gaus-
sian subspace conditionals remain Gaussian in subspace-OT, and the OT maps between
conditional distributions in KR recursion are monotone 1D maps. Therefore, it appears
that such stability properties can be used as building blocks for closed-form OT expressions
or variants: as an example, an OT-based distance for Gaussian mixture models (GMM)
was recently studied in [Delon and Desolneux, 2019] by considering couplings that are
GMMs themselves. Hence, a future research direction consists in studying problems with
couplings or maps restricted to some class, or that only partially match distributions as
in [Alfonsi et al., 2019] which considers moment-matching couplings. Alternatively, a
promising direction is to first lift distributions to some high-dimensional feature space and
approximate them (using e.g. elliptical distributions), before using closed-form couplings
and distances. For instance, Fréchet inception distances [Heusel et al., 2017] consist in
using the Bures-Wasserstein geometry on inception features [Szegedy et al., 2016], and are
now widely used to measure the performance of GANs.
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