Subspace Detours: Building
Transport Plans that are Optimal
on Subspace Projections

Boris Muzellec Marco Cuturi
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Monge Problem

() a probability space, ¢ : {2 x {2 — R.
1, v two probability measures in P(€2).

[Monge’81] problem: find a map 71" : {2 — ()

in /Q c(z, T(2)) u(dx)

Typu=v
A

q

Problem: might not be feasible (e.g. atoms)

T Tr = '
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Kantorovich Relaxation

e Instead of maps 1" : {2 — (2, consider
probabilistic maps, i.e. couplings P € P ({2 x ():

(p,v) S{P € P(Q x Q)|VA, B C Q,

P(A x Q) = p(A),
P(Q x B) = v(B)}




Kantorovich Relaxation

(e, v) déf{P c P2 x Q)| VA, B C 2,

P(AxQ)=n(A),P(Qx B)=v(B)}




Links between Monge & Kantorovich

Prop. For “well behaved” costs ¢, if p has
a density then an optimal Monge map 1™ be-
tween p and v must exist.

Prop. In that case
P* = (Id,T")yp € (1, v)

is also optimal for the Kantorovich problem.

|Brenier’91] |Smith&Knott’87] [McCann’01]
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Wasserstein Distances

Let p > 1. Let ¢ := D, a metric.

Def. The p-Wasserstein distance between ., € P(Q) Is
|
P

yEIl(u,v)

W, (i, v) d§f< inf J DP(x, y)dy(x, y))
Q

Prop. When a Monge map 7 exists,

1
Wi (1, ) = ( inf j DP(x, T(x))u(dx))p
Q

Tﬂ//l:I/

In the following: p=2, c=| ||

v



Practical Issues

High-Dimensional issues:
1
e Sampling complexity in © <j> [Dudley’69, Fournier & Guillin’15]

nd

e Computational complexity

(Partial) Solutions:
 Regularization [Cuturi’13]
e Low-dimensional projections:

e Sliced Wasserstein [Bonneel & al.’15]
e Subspace Robust Wasserstein [Paty & Cuturi’19]
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Low-dimensional Approaches

e Sliced Wasserstein: 1D projections

def _ _
W3t 2) € Egeser [ W3 (o)t (o)

* Subspace-Robust Wasserstein: adversarial kD projections

def
P (p,v) = max  Wy((ppgit, (Ppsv)
E.dim(E)=k

def .
S¢(u,v) = min  max [IlPE(X) — pE)II”dy(x. y)
yell(u,v) E:.dim(E)=k

But how to reconstruct a transport map (or plan) in R ?
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Subspace-Optimal Transport

Let E a subspace, s: E— E an (optimal) transport on E

Def. The class of E-optimal transport plans from ;. to v is

de
() € (y € v) : 7 = (Adg S) )

de de de
where 1, £ (Pe)y(1),  vg =4 (Pp)y(V), Vg 2 (pp. Pe)y(7)
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A quick reminder

Def. Disintegration of yon E: (u, ), - S.t.

Vge C(E),xp — [ gy, is Borel-measurable
EL

Vx; € E, u,_is supported on {x;} X E*

Vf € Cb(Rd)a [f dy = [ < Jf (X, xEl)dﬂxE(in)) dpg(xg)

Notation: u=p, ® ug

11




Degrees of treedom 1in (4, v)?

® V£ is supported on 2(S) € {(x. S(y) : x5 € E}

—> ¥ is fully characterised by its disintegrations ¥, su,)-*e € E

I
|
|
|
I
|
i
i
n
\
1
1
|
I
|

{xe} X E  {S(xe)} X E*
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Monge-Independent Transport

o Extend Yg with independent couplings /., & Vg,

Def. Monge-Independent (Ml) transport plan:

de
(4, V) =4 (ty, @ Vg(x,)) & (Idg, S)grig

def def
where 1z = (pp)y(1). vg = (Pp)y(v), S Monge map from i to vy, vz = (Idg, S)iip

Prop. Let 1, € P(RY) be a.c. and compactly supported,

u,, v, n > 0 uniform over n i.i.d samples, =, € I1.(x,,v,),n >0

Then ﬂ'n — 7Z'M|

MI is naturally obtained as the limit of discrete sampling.
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Monge-Knothe Transport

« Extend YE with optimal couplings between y, and vy, ,

Let Vx. € T(x;; - ) : Et - E* be the Monge map from i, 10 vy,

Def. Monge-Knothe (MK) transport map:

de A
Tmk(Xg, Xp1) =4 (SCxg), T(xg; xz1) € E® E*

Prop. The Monge-Knothe plan is optimal in I1.(x, v), namely

Tk € arg min [E(X’Y)Ny[HX — Y|I?]
}/EHE(IM’V)

de
Where, TMK =f (Ide, TMK)ﬂIM
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Monge-Knothe Transport contd

MK is the limit OT of « split » costs of the type

d*(x, y) —Z(x—yl)2+€ Z (x—y])2 e —> 0

J=k+1

Prop. Let ;.,v € 2,(R?) be two a.c. probability measures, and

a’ef

Ve > 0,P, = V V. + ¢V V], and T, the OT map for the cost d; (, WY (x - WP (x — )

EL9

Then T, — T, in L,(1)
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OT for Gaussian Distributions

[Gelbrich’90]

Prop. If o, § € P(RY) are elliptical distributions, then

sz(a, f)=|m, — mﬁ||% + B%(vara, varff)

1 11
B2(A,B) = Tr(A + B—2(A2BA2)2) is the (squared) Bures distance

Prop. If o, § € P(RY) are elliptical distributions with vara = A, var = B, then

T(x) = my + TAB(X —1Im,) is the optimal Monge map

1 1 I 1 1
where TAB T A™2(A2BA2)2A" 2 is such that T**AT*® = B and T*® € PSD
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Monge-Independent: Gaussian Distributions

— N

From now on: x=.4(,A), v=4(0,B)
Ar Apps B. B,.
A= TE EE | B — E EE
AEEJ_ AEJ_ BEEJ_ BEJ_

(Ve Vz) orthonormal basis of E® E*

: g (A C
Prop. LetC¥ (ViA;+ VoAL ) TA®: (Vyr + (B,) By V],) and = < <cT B)

Then ), (11,v) = /(0,,, ) € P(RYx RY)

1 1 1 1 1
where T*B € A"2(A2BA2)2A™2
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Monge-Knothe: Gaussian Distributions

A.B
| R Ox(a—io) )

BT@EL(TAEBE)_l _ TA/AR)(B/Bg) AEEL] (Ap)~! T(A/Ap)(B/B)

Prop. Tyx= <[

1 1 11 1
where A/A, € A, — AT AZ'A g, is the Schur complement of A w.r.t. A, and T*® € A"2(A2BA2)2A 2

Ho

= (D) (0 @ ©u1 Monge interpolation

E
Ho

> (2 @ @ th MK interpolation
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Application: Color Transfer

Transtorm a source image’s color palette into that of a target image

® Use an OT map on pixel values

MK approach:

* Compute 1D OT map between grayscale images

Gray Source Gray Transfer Gray Target

®* Then extrapolate a full transport map:

Source

Full OT (runtime 2.67s) MK : Gray Projection (runtime 0.052s) Sliced OT (100 projs, runtime 0.057s)
o W, ol A




Elliptical Word Embeddings

« Skipgram-like » model :

e Sliding window of size 10, extract positive pairs (w,c) € &%

ALL MODELS ARE WRONG BUT SOME ARE USEFUL
ALL MODELS ARE WRONG BUT SOME ARE USEFUL
ALL MODELS 'ARE WRONG BUT SOME ARE USEFUL

« Sample negative pairs (w,c¢’) € X

e Optimize

min Z [M — ([MW» Helg — Liy ”c’]?B)]

(W,0)ER T

1
1 1

2
where [a, g = (a,b) + Tr ( A2B AE) Is a Bures generalization of the dot product

 Train over Wackypedia + UkWac : 3 billion tokens
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Application: Semantic Mediation (NLP)

Elliptical word embeddings from [BM&MC’18]:

® cach word is represented with a mean vector M and a PSD matrix Z

Semantic mediation:

* MK between words wl, w2, E = the k first directions of the SVD of context ¢

Intluence of context ¢ on the nearest neighbours - Symmetric differences:

Word Context 1  Context 2 Difference
instrument  monitor oboe cathode, monitor, sampler, rca, watts, instrumentation, telescope, synthesizer, ambient
oboe monitor  tuned, trombone, guitar, harmonic, octave, baritone, clarinet, saxophone, virtuoso
windows pc door netscape, installer, doubleclick, burner, installs, adapter, router, cpus
door pc screwed, recessed, rails, ceilings, tiling, upvce, profiled, roofs
fox media, hedgehog Penny, quiz, Whitman, outraged, Tinker, ads, Keating, Palin, show

hedgehog media panther, reintroduced, kangaroo, Harriet, fair, hedgehog, bush, paw, bunny
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