Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections

Boris Muzellec

Marco Cuturi

Outline

- 1. A (quick) intro to OT
- 2. Subspace-Optimal Transport
- 3. The Gaussian Case
- 4. Application: Semantic Mediation (NLP)

Monge Problem

 Ω a probability space, $\boldsymbol{c}: \Omega \times \Omega \to \mathbb{R}$. $\boldsymbol{\mu}, \boldsymbol{\nu}$ two probability measures in $\mathcal{P}(\Omega)$.

[Monge'81] problem: find a map $T: \Omega \to \Omega$ $\inf_{\mathbf{T}_{\sharp}\boldsymbol{\mu}=\boldsymbol{\nu}}\int_{\Omega} \boldsymbol{c}(x,\boldsymbol{T}(x))\boldsymbol{\mu}(dx)$ **Problem: might not be feasible (e.g. atoms)** 3

Kantorovich Relaxation

• Instead of maps $T : \Omega \to \Omega$, consider probabilistic maps, i.e. couplings $P \in \mathcal{P}(\Omega \times \Omega)$:

$$\Pi(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text{def}}{=} \{ \boldsymbol{P} \in \mathcal{P}(\Omega \times \Omega) | \forall \boldsymbol{A}, \boldsymbol{B} \subset \Omega, \\ \boldsymbol{P}(\boldsymbol{A} \times \Omega) = \boldsymbol{\mu}(\boldsymbol{A}), \\ \boldsymbol{P}(\Omega \times \boldsymbol{B}) = \boldsymbol{\nu}(\boldsymbol{B}) \}$$

Kantorovich Relaxation

 $\Pi(\boldsymbol{\mu},\boldsymbol{\nu}) \stackrel{\text{def}}{=} \{ \boldsymbol{P} \in \mathcal{P}(\Omega \times \Omega) | \forall \boldsymbol{A}, \boldsymbol{B} \subset \Omega,$ $\boldsymbol{P}(\boldsymbol{A} \times \Omega) = \boldsymbol{\mu}(\boldsymbol{A}), \boldsymbol{P}(\Omega \times \boldsymbol{B}) = \boldsymbol{\nu}(\boldsymbol{B})\}$

Links between Monge & Kantorovich

Prop. For "well behaved" costs \boldsymbol{c} , if $\boldsymbol{\mu}$ has a density then an *optimal* Monge map T^* between $\boldsymbol{\mu}$ and $\boldsymbol{\nu}$ must exist.

Prop. In that case

$$\mathbf{P}^{\star} := (\mathrm{Id}, T^{\star})_{\sharp} \boldsymbol{\mu} \in \Pi(\boldsymbol{\mu}, \boldsymbol{\nu})$$

is also *optimal* for the Kantorovich problem.

[Brenier'91] [Smith&Knott'87] [McCann'01]

Wasserstein Distances

Let $p \ge 1$. Let $\boldsymbol{c} := \boldsymbol{D}$, a metric.

Def. The p-Wasserstein distance between $\mu, \nu \in P(\Omega)$ is

$$W_p(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text{def}}{=} \left(\inf_{\boldsymbol{\gamma} \in \Pi(\boldsymbol{\mu}, \boldsymbol{\nu})} \int_{\Omega} D^p(x, y) d\boldsymbol{\gamma}(x, y) \right)^{\frac{1}{p}}$$

Prop. When a Monge map T exists,

$$W_p(\boldsymbol{\mu}, \boldsymbol{\nu}) = \left(\inf_{T_{\sharp}\boldsymbol{\mu}=\boldsymbol{\nu}} \int_{\Omega} D^p(x, T(x))\boldsymbol{\mu}(dx)\right)^{\frac{1}{p}}$$

In the following : p = 2, $c = \| \cdot \|$

Practical Issues

High-Dimensional issues:

- Sampling complexity in $\mathcal{O}\left(\frac{1}{n^{\frac{1}{d}}}\right)$ [Dudley'69, Fournier & Guillin'15]
- Computational complexity

(Partial) Solutions:

- Regularization [Cuturi'13]
- Low-dimensional projections:
 - Sliced Wasserstein [Bonneel & al.'15]
 - Subspace Robust Wasserstein [Paty & Cuturi'19]

Low-dimensional Approaches

• Sliced Wasserstein: 1D projections

$$\mathrm{SW}_2^2(\boldsymbol{\mu},\boldsymbol{\nu}) \stackrel{def}{=} \mathbb{E}_{\theta \in S^{d-1}} \left[W_2^2 \left((p_\theta)_{\sharp} \boldsymbol{\mu}, (p_\theta)_{\sharp} \boldsymbol{\nu} \right) \right]$$

• Subspace-Robust Wasserstein: adversarial kD projections

$$P_{k}(\mu, \nu) \stackrel{def}{=} \max_{\substack{E:dim(E)=k}} W_{2}((p_{E})_{\sharp}\mu, (p_{E})_{\sharp}\nu)$$
$$S_{k}^{2}(\mu, \nu) \stackrel{def}{=} \min_{\gamma \in \Pi(\mu, \nu)} \max_{E:dim(E)=k} \int \|p_{E}(x) - p_{E}(y)\|^{2} d\gamma(x, y)$$

But how to reconstruct a transport map (or plan) in \mathbb{R}^d ?

Subspace-Optimal Transport

Let E a subspace, $S: E \rightarrow E$ an (optimal) transport on E

Def. The class of *E*-optimal transport plans from μ to ν is

$$\Pi_E(\mu,\nu) \stackrel{def}{=} \{ \gamma \in \Pi(\mu,\nu) : \gamma_E = (\mathrm{Id}_E,S)_{\sharp}\mu_E \}$$

where $\mu_E \stackrel{def}{=} (p_E)_{\sharp}(\mu), \quad \nu_E \stackrel{def}{=} (p_E)_{\sharp}(\nu), \quad \gamma_E \stackrel{def}{=} (p_E, p_E)_{\sharp}(\gamma)$

A quick reminder

Def. Disintegration of μ on E: $(\mu_{x_E})_{x_E \in E}$ s.t.

$$\forall g \in C_b(E), x_E \rightarrow \int_{E^{\perp}} g \mu_{x_E}$$
 is Borel-measurable

 $\forall x_E \in E, \mu_{x_E} \text{ is supported on } \{x_E\} \times E^{\perp}$

$$\forall f \in C_b(\mathbb{R}^d), \int f d\mu = \int \left(\int f(x_E, x_{E^{\perp}}) d\mu_{x_E}(x_{E^{\perp}}) \right) d\mu_E(x_E)$$

Notation: $\mu = \mu_{x_E} \otimes \mu_E$

Degrees of freedom in $\Pi_E(\mu, \nu)$?

- γ_E is supported on $\mathscr{G}(S) \stackrel{def}{=} \{(x_E, S(x_E)) : x_E \in E\}$
- $\implies \gamma$ is fully characterised by its disintegrations $\gamma_{(x_E,S(x_E))}, x_E \in E$

Monge-Independent Transport

Extend γ_E with independent couplings $\mu_{x_E} \otimes \nu_{S(x_E)}$

Def. Monge-Independent (MI) transport plan:

$$\pi_{\mathsf{MI}}(\mu,\nu) \stackrel{def}{=} (\mu_{x_E} \otimes \nu_{S(x_E)}) \otimes (\mathrm{Id}_E,S)_{\sharp} \mu_E$$

where $\mu_E \stackrel{def}{=} (p_E)_{\sharp}(\mu), \ \nu_E \stackrel{def}{=} (p_E)_{\sharp}(\nu), \ S$ Monge map from μ_E to $\nu_E, \gamma_E = (\mathrm{Id}_E, S)_{\sharp}\mu_E$

Prop. Let $\mu, \nu \in P(\mathbb{R}^d)$ be a.c. and compactly supported,

 $\mu_n, \nu_n, n \ge 0$ uniform over *n* i.i.d samples, $\pi_n \in \Pi_E(\mu_n, \nu_n), n \ge 0$

Then
$$\pi_n \rightharpoonup \pi_{MI}$$

MI is naturally obtained as the limit of discrete sampling.

Monge-Knothe Transport

Extend γ_E with optimal couplings between μ_{x_E} and $\nu_{S(x_E)}$

Let $\forall x_E \in \hat{T}(x_E; \cdot) : E^{\perp} \to E^{\perp}$ be the Monge map from μ_{x_E} to $\nu_{S(E)}$

Def. Monge-Knothe (MK) transport map:

$$T_{\mathsf{MK}}(x_E, x_{E^{\perp}}) \stackrel{def}{=} (S(x_E), \hat{T}(x_E; x_{E^{\perp}})) \in E \oplus E^{\perp}$$

Prop. The Monge-Knothe plan is optimal in $\prod_{E}(\mu, \nu)$, namely

$$\pi_{\mathsf{MK}} \in \arg\min_{\gamma \in \Pi_E(\mu,\nu)} \mathbb{E}_{(X,Y) \sim \gamma}[\|X - Y\|^2]$$

where, $\pi_{\mathsf{MK}} \stackrel{def}{=} (\mathrm{Id}_{\mathbb{R}^d}, T_{\mathsf{MK}})_{\sharp}\mu$

Monge-Knothe Transport cont'd

MK is the limit OT of « split » costs of the type

$$d^{2}(x, y) := \sum_{i=1}^{k} (x_{i} - y_{i})^{2} + \epsilon \sum_{j=k+1}^{d} (x_{j} - y_{j})^{2}, \quad \epsilon \to 0$$

Prop. Let $\mu, \nu \in \mathscr{P}_2(\mathbb{R}^d)$ be two a.c. probability measures, and $\forall \epsilon > 0, \mathbf{P}_{\epsilon} \stackrel{def}{=} \mathbf{V}_E \mathbf{V}_E^{\top} + \epsilon \mathbf{V}_{E^{\perp}} \mathbf{V}_{E^{\perp}}^{\top}$, and T_{ϵ} the OT map for the cost $d_{\mathbf{P}_{\epsilon}}^2(x, y) \stackrel{def}{=} (x - y)^{\top} \mathbf{P}_{\epsilon}(x - y)$ Then $T_{\epsilon} \to T_{MK}$ in $L_2(\mu)$

OT for Gaussian Distributions

[Gelbrich'90]

Prop. If $\alpha, \beta \in P(\mathbb{R}^d)$ are elliptical distributions, then $W_2^2(\alpha, \beta) = \|\mathbf{m}_{\alpha} - \mathbf{m}_{\beta}\|_2^2 + \mathfrak{B}^2(\operatorname{var}\alpha, \operatorname{var}\beta)$ $\mathfrak{B}^2(\mathbf{A}, \mathbf{B}) \stackrel{\text{def}}{=} \operatorname{Tr}(\mathbf{A} + \mathbf{B} - 2(\mathbf{A}^{\frac{1}{2}}\mathbf{B}\mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}}) \text{ is the (squared) Bures distance}$

Prop. If $\alpha, \beta \in P(\mathbb{R}^d)$ are elliptical distributions with $var\alpha = A$, $var\beta = B$, then

$$T(\mathbf{x}) = \mathbf{m}_{\beta} + T^{AB}(\mathbf{x} - \mathbf{m}_{\alpha})$$
 is the optimal Monge map

where $\mathbf{T}^{AB} \stackrel{\text{def}}{=} \mathbf{A}^{-\frac{1}{2}} (\mathbf{A}^{\frac{1}{2}} \mathbf{B} \mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}} \mathbf{A}^{-\frac{1}{2}}$ is such that $\mathbf{T}^{AB} \mathbf{A} \mathbf{T}^{AB} = \mathbf{B}$ and $\mathbf{T}^{AB} \in \text{PSD}$

Monge-Independent: Gaussian Distributions

From now on: $\mu = \mathcal{N}(0_d, \mathbf{A}), \ \nu = \mathcal{N}(0_d, \mathbf{B})$

$$\mathbf{A} = \begin{pmatrix} \mathbf{A}_E & \mathbf{A}_{EE^{\perp}} \\ \mathbf{A}_{EE^{\perp}}^{\top} & \mathbf{A}_{E^{\perp}} \end{pmatrix}, \qquad \mathbf{B} = \begin{pmatrix} \mathbf{B}_E & \mathbf{B}_{EE^{\perp}} \\ \mathbf{B}_{EE^{\perp}}^{\top} & \mathbf{B}_{E^{\perp}} \end{pmatrix}$$

 $(\mathbf{V}_E \ \mathbf{V}_{E^{\perp}})$ orthonormal basis of $E \oplus E^{\perp}$

Prop. Let
$$\mathbf{C} \stackrel{def}{=} (\mathbf{V}_{E}\mathbf{A}_{E} + \mathbf{V}_{E^{\perp}}\mathbf{A}_{EE^{\perp}}^{\mathsf{T}}) \mathbf{T}^{\mathbf{A}_{E}\mathbf{B}_{E}}(\mathbf{V}_{E^{\mathsf{T}}} + (\mathbf{B}_{E})^{-1}\mathbf{B}_{EE^{\perp}}\mathbf{V}_{E^{\perp}}^{\mathsf{T}})$$
 and $\Sigma \stackrel{def}{=} \begin{pmatrix} \mathbf{A} & \mathbf{C} \\ \mathbf{C}^{\mathsf{T}} & \mathbf{B} \end{pmatrix}$
Then $\pi_{MK}(\boldsymbol{\mu}, \boldsymbol{\nu}) = \mathcal{N}(\mathbf{0}_{2d}, \Sigma) \in \mathscr{P}(\mathbb{R}^{d} \times \mathbb{R}^{d})$

where $\mathbf{T}^{AB} \stackrel{\text{def}}{=} \mathbf{A}^{-\frac{1}{2}} (\mathbf{A}^{\frac{1}{2}} \mathbf{B} \mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}} \mathbf{A}^{-\frac{1}{2}}$

Monge-Knothe: Gaussian Distributions

Prop.
$$\mathbf{T}_{\mathrm{MK}} = \begin{pmatrix} \mathbf{T}^{\mathbf{A}_{E}\mathbf{B}_{E}} & \mathbf{0}_{k\times(d-k)} \\ [\mathbf{B}_{EE^{\perp}}^{\mathsf{T}}(\mathbf{T}^{\mathbf{A}_{E}\mathbf{B}_{E}})^{-1} - \mathbf{T}^{(\mathbf{A}/\mathbf{A}_{E})(\mathbf{B}/\mathbf{B}_{E})}\mathbf{A}_{EE^{\perp}}^{\mathsf{T}}](\mathbf{A}_{E})^{-1} & \mathbf{T}^{(\mathbf{A}/\mathbf{A}_{E})(\mathbf{B}/\mathbf{B}_{E})} \end{pmatrix}$$

where $\mathbf{A}/\mathbf{A}_{E} \stackrel{def}{=} \mathbf{A}_{E^{\perp}} - \mathbf{A}_{EE^{\perp}}^{\mathsf{T}}\mathbf{A}_{E}^{-1}\mathbf{A}_{EE^{\perp}}$ is the Schur complement of **A** w.r.t. \mathbf{A}_{E} and $\mathbf{T}^{\mathbf{A}\mathbf{B}} \stackrel{def}{=} \mathbf{A}^{-\frac{1}{2}}(\mathbf{A}^{\frac{1}{2}}\mathbf{B}\mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}}\mathbf{A}^{-\frac{1}{2}}$

Application: Color Transfer

Transform a source image's color palette into that of a target image

Use an OT map on pixel values

MK approach:

Compute 1D OT map between grayscale images

Then extrapolate a full transport map:

Elliptical Word Embeddings

« Skipgram-like » model :

- Sliding window of size 10, extract positive pairs $(w, c) \in \mathcal{R}$
- Sample negative pairs $(w, c') \notin \mathscr{R}$
- Optimize

 ALL MODELS
 ARE
 WRONG
 BUT
 SOME
 ARE
 USEFUL

 ALL
 MODELS
 ARE
 WRONG
 BUT
 SOME
 ARE
 USEFUL

 ALL
 MODELS
 ARE
 WRONG
 BUT
 SOME
 ARE
 USEFUL

$$\min \sum_{(w,c)\in\mathscr{R}} \left[M - \left([\mu_w, \mu_c]_{\mathfrak{B}} - [\mu_w, \mu_{c'}]_{\mathfrak{B}} \right) \right]_+$$

where $[\alpha, \beta]_{\mathfrak{B}} := \langle \mathbf{a}, \mathbf{b} \rangle + \operatorname{Tr} \left(\mathbf{A}^{\frac{1}{2}} \mathbf{B} \mathbf{A}^{\frac{1}{2}} \right)^{\frac{1}{2}}$ is a Bures generalization of the dot product

• Train over Wackypedia + UkWac : 3 billion tokens

Application: Semantic Mediation (NLP)

Elliptical word embeddings from [BM&MC'18]:

- each word is represented with a mean vector ${f m}$ and a PSD matrix ${f \Sigma}$
- Semantic mediation:
 - MK between words w1, w2, E = the k first directions of the SVD of context c

Influence of context *c* on the nearest neighbours - Symmetric differences:

Word	Context 1	Context 2	Difference
instrument	monitor	oboe	cathode, monitor, sampler, rca, watts, instrumentation, telescope, synthesizer, ambient
	oboe	monitor	tuned, trombone, guitar, harmonic, octave, baritone, clarinet, saxophone, virtuoso
windows	pc	door	netscape, installer, doubleclick, burner, installs, adapter, router, cpus
	door	\mathbf{pc}	screwed, recessed, rails, ceilings, tiling, upvc, profiled, roofs
fox	media	hedgehog	Penny, quiz, Whitman, outraged, Tinker, ads, Keating, Palin, show
	hedgehog	media	panther, reintroduced, kangaroo, Harriet, fair, hedgehog, bush, paw, bunny