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What this thesis is about

OT applications: challenges

Optimal transport is an old mathematical problem, with a rich theory still
actively studied and applications that are gaining momentum. But:

@ It is hard to compute efficiently;

@ It has unfavorable statistical properties.

o Adding regularization to the primal problem:
o Entropic [Cuturi 2013; J. Solomon et al. 2015; Genevay, Cuturi, et al.
2016; Genevay, Peyre, et al. 2018],
o Quadratic [Dessein et al. 2018; Blondel et al. 2018], Tsallis [Muzellec,
Nock, et al. 2017],
o Unbalanced [Frogner et al. 2015; Chizat et al. 2018; Schiebinger et al.
2019],

@ Modeling maps/potentials using Neural Networks:

o Potentials: WGAN [Arjovsky et al. 2017],
o Maps: [Seguy et al. 2018], ICNN [Makkuva et al. 2020].
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What this thesis is about

Workarounds (cont'd)

@ Fall back on cases with closed forms:

o 1D setting (Sliced Wasserstein): [Rabin et al. 2011; Bonneel et al.
2015; Titouan et al. 2019; Kolouri et al. 2019],

o Gaussian/Elliptical distributions: [Heusel et al. 2017; Chen,
Georgiou, & Tannenbaum 2019], this thesis.

Contributions in this thesis

@ Leverage the particular case of OT between Gaussian/Elliptical
distr. to design efficient ML tools [NeurlPS'18];

<

@ Lift transport maps from low-dimensional projections, with closed
forms for Gaussians [NeurlPS'19];

@ Prove closed forms of Gaussian OT with entropic regularization and
unbalanced relaxation [NeurlPS'20];

e Apply entropic OT to missing data imputation [I[CML'20].




Monge's problem

Monge's Problem (1781)M

How to move earth with minimal effort w.r.t. cost function ¢(x,y)?

T:RicIlliRd /Rd o(z, T(x))du(z) st. VYA CRYv(A) =u(T7HA) (M)

@ Challenge: existence of a solution (ex: Dirac to 2 half-Diracs X).

[1] G. Monge. “Mémoire sur la théorie des déblais et des remblais”. Histoire de |'’Académie
Royale des Sciences de Paris [1781]. 5/ 41



Kantorovich's problem

Kantorovich's Problem (1942)[

How to transport goods at a minimal cost?

inf x,y)dr(z s.t. T = [L, PoyT = V K
TEP(RExRE) //d y y) Py b2y ( )
dx R

Transportation Plans

def
Iy, v) = {m€P(R? x RY) : pym = i, poy = v}, p1(2,y) = 2, pa(z,y) = v

@ Existence of a solution under very mild conditions.

[2] L. V. Kantorovich. “On the translocation of masses”. Dokl. Akad. Nauk. USSR. 1942.
6/ 41



Computing OT in practice

Discrete-discrete: LP in O(n®logn), regularized approachesl® in O(n?).
Discrete-continuous: density approx on grid*l, stochastic approx[!.

Continuous-continuous: In general, difficult.
@ In low dimension, if ¢ = || - ||%:
o Benamou-Brenier'sl® dynamic formulation (variational problem),
o Equivalent to Monge-Ampére PDE (by Brenier's theoreml)),
@ In high dimension:
o NN parameterization of potentials!® or maps!® (very active in ML),
o Closed forms (this thesis):

o Project to low dimension: Sliced Wassersteinl10/[11]
o Gaussians!2 13114 Elliptical distributions!t®!.

[3] Cuturi 2013; [4] Mérigot 2011; [5] Genevay, Cuturi, et al. 2016; [6] Benamou et al. 2000;
[7] Brenier 1987; [8] Arjovsky et al. 2017; [9] Makkuva et al. 2020; [10] Rabin et al. 2011; [11]
Bonneel et al. 2015; [12] Dowson et al. 1982; [13] Olkin et al. 1982; [14] Takatsu 2011; [15]
Gelbrich 1990.
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Seminal closed forms

Regularizing the data to fall back to closed forms:

1-dimensional OT
If 11, € P(R), quantile functions F; 1, F,7t, ¢(z,y) = c(|z — yl), ¢ convex,
1

OT(v) = [ e(IF; (@) - F ' (@)])da

¢ v
0

(Used in Sliced Wasserstein [Rabin et al. 2011; Bonneel et al. 2015].)

|

Bures-Wasserstein Geometry

Gaussian and elliptical distributionsl* with ¢(xz,y) = ||z — y||%.
Let « = N(a,A), and 5 = N (b,B). Then,

OT(a, f) = |ma — mg|* + B(A, B)

1 11
= |m, — mg||? + TrA + TrB — 2Tr(A2BA32)2.

(E.g. FID [Heusel et al. 2017], GMM-OT [Chen, Georgiou, & Tannenbaum 2019], this thesis.)

[4] M. Gelbrich. “On a formula for the L2 Wasserstein metric between measures on Euclidean
and Hilbert spaces”. Mathematische Nachrichten [1990]. 8 /41



Contributions of this thesis

Algorithms to optimize Bures-Wasserstein large ML applications,

leveraging Riemannian structure for projection-free gradients & backprop.

Methods to extract maps and plans defined on the full space from
subspace projections, in closed forms for Gaussian measures.

Entropic regularization and unbalanced relaxation of
the Bures-Wasserstein geometry in closed form.

Distribution-preserving missing data imputation using
entropy-regularized OT (not in this presentation).
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Outline

Reminders: The Bures-Wasserstein Geometry on Elliptical Distributions
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Elliptical Distributions

Generalization of Gaussians: densities with elliptical level sets. )

Definition (Elliptical Distributions!®)

Letac R4 A € Si. Let Ajma denote the Lebesgue measure over ImA.
An elliptical distribution with mean a and scale parameter A is a
probability measure of the form

dptgaa(@) =g ((z—a)T Al(z - a)) dAma (@),

with g : R? — R s.t. Jima 9Ulzl1%+)dAmma (z) = 1, and AT is the
pseudo-inverse of A.

Examples:
@ Dirac measures (A = 0),

e Gaussian distributions (g(-) o« exp(— - /2)),

@ Uniform measure on ellipsoids (g(-) oc T.<1), ... [ '
[5] M. Gelbrich. “On a formula for the L2 Wasserstein metric between measures on Euclidean
and Hilbert spaces”. Mathematische Nachrichten [1990].
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The Bures-Wasserstein Geometry

From now on, c(z,y) = ||z — y||*:
o OT defines the 2-Wasserstein distance: OT(y, ) = Wi (i1, v).

Theorem (Bures-Wasserstein Distancel®)

Let o and B be two elliptical distributions from the same family. Then,
W2(a, 8) = |mg, — mBH2 + B2 (Cov a, Cov ),

with Cov(a) — Exmol(X —mg)(X —m,)T] o A.

Definition (Bures Distancel’l[f])

VA,B e 54, ‘BQ(A, B) def A +TrB — 2Tr(A1/2BA1/2)1/2,

Defines a Riemannian metric on PSD matrices.

<

[6] M. Gelbrich. “On a formula for the L2 Wasserstein metric between measures on Euclidean
and Hilbert spaces”. Mathematische Nachrichten [1990].

[7] D. Bures. “An extension of Kakutani's theorem on infinite product measures to the tensor
product of semifinite w*-algebras”. Trans. of the Am. Math. Soc. [1969].

[8] R. Bhatia et al. “On the Bures-Wasserstein distance between positive definite matrices”.
Expositiones Mathematicae [2018]. 12 /41



Elliptical Monge Maps and Geodesics

Proposition (Gelbrich, 19901)

Let oo = pigaa and B = pgp B be two elliptical distributions from the
same family, s.t. ImB C ImA. Then, T5 : © +— TAB(z — a) + b with

TAB def AT/2(A1/2BA1/2)1/2A1/2

is the Monge map from o to 3, where At/2 is the pseudo-inverse of A1/2.

Riemannian geodesics!'®!

Cap(t) = [(1 — t)Ig + tTABJA[(1 — t)Iq + tTAB]

W, geodesic (p)¢ from pg to py (¢ € [0,1]) and extrapolation

[9] M. Gelbrich. “On a formula for the L2 Wasserstein metric between measures on Euclidean
and Hilbert spaces”. Mathematische Nachrichten [1990].

[10] A. Takatsu. “Wasserstein geometry of Gaussian measures”. Osaka J. Math. [2011]. 13/ a1



Outline

Learning with BW: Computing and Differentiating BW [NeurlPS'18]
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Gradient-Based Optimization

@ Many ML apps. can be cast as min problems. E.g. ming E,.p[lg(x)].
@ Classic method: (stochastic) gradient descent 6 <— 6 — nVylg(xz;).

V.
Bures-Wasserstein as a loss function

To fit models using Bures-Wasserstein as a loss, we need to be able to
perform gradient steps. E.g. barycenter problem:

Minimizati blem: in > W5(,Bi),
inimization problem a:%gl,A) i 5 (a, Bi)

. _ 2
Gradient updates: A <~ A —nVa E W5 (e, Bi)

Can be generalized using chain rule and backprop to min,, f(W3 (o, ).

V.

15 / 41



Computing and Differentiating the Bures Metric

B2(A,B) = TrA + TrB — 2Tr(AY/2BAY/2)1/2 |

Challenge: How to compute and differentiate Bures? J

Naive idea: differentiate matrix square roots with SVD. But:

o Expensive, hard to parallelize (in batches) on GPUs?!l

e Automatic differentiation can be unstable (e.g. with non-distinct
singular values, or singular matrices)

[a] Supported from TensorFlow 1.12.0 (8/11/2018) and Pytorch 1.2.0 (8/8/2019).

Explicit differentiation amounts to solving the Lyapunov equation:

(DAY2)H]AY? + AV2(DAY/?)[H] = H.

16 / 41



The Monge Map is All You Need

The Bures distance and its gradient can be computed from TAB. J

B2(A,B) = TrA + TrB — 2Tr(AY/2BAY/2)1/2
= TrA + TrB — 2Tr(ATAB).

Proposition (Bures Gradient)
Let A,B € S¢ s.t. ImB C ImA. Then VAB%(A,B) =14 — TAB.

If we need both VAB2(A,B) and VgB?(A,B), we need an efficient
method to compute

o TAB — A_1/2(A1/2BA1/2)1/2A_1/2, and
° TBA _ B_1/2(B1/2AB1/2)1/2B_1/2 _ (TAB)_l.

17 /41



Elliptical Monge Maps and Matrix Sign Function

Theorem (Higham, Mackey, Tisseurl!!)
Let A,B € S%,. Then

. 0 B 0 TAB
s1gn A 0 = TBA 0 )
def

where sign(M) < M (M2) /2,

TAB and TBA can be obtained using matrix sign iterations.

[11] N. J. Higham. Functions of Matrices: Theory and Computation. SIAM, 2008.

18 / 41




Newton-Schulz iterations

Newton-Schulz iterations

Yy = Y81 — Y3Z,Yy), Yo=B
Zis1 = AZ,3La — Z1Y1Zy), Zo= A

Proposition (Higham[2])

I Ta— (9 B)?|lop < 1, then Y}, — TAB and Z, — TBA quadraticallyle.

[a] ie. 3¢>0,[[Yiq1 — TAB|lop < ¢ Yy — TAB|2,, and likewise for Zy.

Why bother?
e Easy to parallelize on GPUs (only requires matrix multiplications)
o Yields both TAB and TBA: we get VAB2(A,B) and VpB2(A, B)

|

We can now use the Bures-Wasserstein distance
in gradient-based optimization.

\

[12] N. J. Higham. Functions of Matrices: Theory and Computation. SIAM, 2008.
19 /41



Dealing with PSD constraints: avoiding projections

Last issue

o A —tVaAB2(A,B) is not necessarily PSD.

@ Projected gradient descent requires eigen-decomposition.

Classic workaround

|

o Usea A=T(Ls) %

o Effect on gradient methods?

Riemannian geodesics at the cost of Euclidean descent[!3]

° Vi, 3BYLaLAT,B) = (Is — TAB)La

LaLAT parameterization.

o Riem. geodesics: Cap(t) = [(1 — t)Iq + tTABJA[(1 — t)Iq + tTAB]

o "TI(-) makes B2 flat" : La — tVp, 2B%(A,B) € 1" {Cag(t)}

[13] B. Muzellec & M. Cuturi. “Generalizing Point Embeddings using the Wasserstein Space of
Elliptical Distributions”. NeurlPS. 2018.
20 / 41



Application: Learning Representations

Problem: find representations for objects 2 in some space X' (e.g. words,
graphs, high-dimensional vectors...) J

o Classic approach: represent each x as a point y € RF[14].
o Elliptical embeddings!™®: represent each x as an ell. distr. o with
params a € R¥ and A ¢ S_’fr. Use Bures-Wasserstein geometry.

2
wil= Bach

_3- = classical
wem famous
=@= composer
= man

T T T T T T T
6 -4 -2 0 2 4 6

[14] Figure from T. Mikolov et al. “Distributed representations of words and phrases and their
compositionality”. NeurlPS. 2013.
[15] B. Muzellec & M. Cuturi. “Generalizing Point Embeddings using the Wasserstein Space of

Elliptical Distributions”. NeurlPS. 2018. 21 m



Elliptical Word Embeddings

Advantage: encodes uncertainty, or spread.

Training: mlnz Z [ = [pw s ve]] + %Z[M“’ : VG,]]-F }

W cePos(w) ¢’ €Neg(w)
Similarity Rank Ci lati
ALL MODELS ARE WRONG BUT SOME ARE USEFUL Datoscl  WIG/45/C_[EN/12/OM
ALL [MODELS ARE WRONG BUT SOME ARE USEFUL WordSim ~ 53.45 66.02
‘WordSim-R 61.70 71.07
ALL MODELS | ARE WRONG BUT SOME ARE USEFUL WordSim-S ~ 48.99 60.58
MEN 65.16 65.58
MC 59.48 65.95
. Gl RG 69.77 65.58
Polarization: [a: 5] € (a, b) + Tr(A/2BA/2)1/2 J P 37.18 25.14
MT-287 61.72 59.53
MT-771 57.63 56.78
RW 40.14 29.04
Datasets econsucton perormance on WORONET
}/77}777*7*—.175
ukWaC -+ WaCkypedia: 3 billion tokens, 250K uniquel®] e = il |

125G

WordNet: DAG, 80K unique nouns, 740K relationships[17]

50

Mean Average Precision

Implementation: cupy (GPU) + cython, on GitHub. ) A 25
- P
%

[16] L. Vilnis et al. “Word representations via Gaussian embedding”. /CLR [2015].

[17] M. Nickel et al. “Poincaré Embeddings for Learning Hierarchical Representations”. NeurlPS.
2017.
22 / 41



Outline

Building OT Plans on Subspace Projections [NeurlPS'19]

23 /41



Projected OT variants

Average on 1D projectionsl!®l

def
SW(p,v) E Epoga-1[OT (8,0 4)].

| \

Projection on adversarially-selected k-D subspacel®]

def
Pi(p,v) S  max W , DERY).
¥ (1, v) L 2(pEyit, PEEY)
Yields better computational and statistical properties than vanilla OT. J

Lifting from subspace to the full space

Projecting first, transporting next is promising, but it restricts OT to
happen in the projected space. Can we recover a plan in the entire space?

[18] J. Rabin et al. “Wasserstein barycenter and its application to texture mixing". SSV/M. 2011.
[19] F.-P. Paty et al. “Subspace Robust Wasserstein Distances”. /CML. 2019.
24 / 41



Subspace OT
Definition (Subspace-Optimal Plans, Muzellec & Cuturi, 2019)

o E a k-dimensional subspace of R¢, projection operator pg,

o 1,V € Py(RY), up := pEg/ (resp. VE = pgyv),
@ S a Monge map from ug to vg.

. def .
E-optimal plans: Tg(u,v) = {7 € U(w,v) : (b, pE)im = (idg, S)1iE}-

@ Existence guaranteed by the "Gluing Lemma":

(20][21]

Gluing Lemma

Given (X1, Xo) ~ (u1, p2) and (Yo, Ya) ~ (2, u3), there exists
(Z1, Z2, Z3) s.t. (21, Z2) ~ (1, p2) and (Z2, Z3) ~ (p2, p3)

What are the degrees of freedom in g (p,v)? ]

[20] I. Berkes et al. “An almost sure invariance principle for the empirical distribution function of
mixing random variables”. Probability Theory and Rel. Fields [1977].

[21] C. Villani. Optimal transport: old and new. 2008. 251



Characterization of Subspace-Optimal Plans

Proposition (Muzellec & Cuturi, 2019)

Let m € Ilg(u,v). Then (equivalently),

o 7 is supported on G(S) x E+, where G(S) = {(zg, S(x ) zg € E};
)

def
o 7 is characterized by its disintegration on G(S): Ty, 5(zy), TE € E.

— & &

{xe} xE* {S(xg)} xE*

26 / 41



Monge-Knothe Transport

Definition (Monge-Knothe Transport)

Vip € E, let T(zp;-) : E- — E* denote the Monge map from /i, to
Vs(zp)- | he Monge-Knothe transportation map is defined as

Tuw:E®E* - E®E*
(-%'E,.%‘EL) = (S(xE)aT(mE7mEL))

Proposition (Muzellec & Cuturi, 2019)
The Monge-Knothe plan is optimal in T1g(p,v), namely

Ke argmin Ex y S — YH]
vl (p,v)

27/ 41



MK transport for Gaussians

Proposition (Muzellec & Cuturi, 2019)
The MK transport map on E between oo = N (04, A) and 8 = N (04,B) is
linear, and represented by the following matrix:

S TAeBE O x (d—k)
MK = | [BL 5 (TARB2)-1 - TVAR®/ER AT ] (Ap)! T(VAR)P/R0)

A Ag Agpi B=— Br Bgpi Ho
—\ AT oL AEL ’ - BT‘ oL Bul
EE EE (=) @ @ I

Schur complements:

) Usual Monge Interpolation

(*] A/AE déf AEL _AEELA AEEL

@ Prop: A/ag = Covyxn(XpL|XE)

) MK Interpolation through E

28 / 41



Application: Color transfer

Source

@ KMeans quantization in 3D RGB space, 3000 clusters.
e 1D OT in gray space: O(nlogn) time.

Gray Source Gray Transfer

_ Gray Target




Outline

Unbalanced Entropic OT for Gaussian Measures [NeurlPS'20]
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Regularizing OT: A Recap

Real data comes in a discrete form: /i = %Z?:1 0z, What to do with it?J

Regularizing the data

Elliptical Dist.

Bures-Wasserstein

1D Projections

Sliced Wasserstein

Vanilla OT Entropic OT
Linear Program Sinkhorn Algo.
O(n*logn) O(n?)

Unbalanced OT

Generalized Sinkhorn

O(n?)

Regularizing the problem
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Regularizing OT: A Recap

Real data comes in a discrete form: /1= 3" | §,.. What to do with it? )

Regularizing the data

Elliptical Dist.

Bures-Wasserstein

1D Projections

Sliced Wasserstein

Vanilla OT
Linear Program

O(n®logn)

Entropic OT
Sinkhorn Algo.
O(n?)

Unbalanced OT

Generalized Sinkhorn

O(n?)

Regularizing the pro[)Iem
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Entropy-regularized OT: Reminders

Primal Problem

0T, (1,v) % min / e — yl2d(z,y) + 20 KL(x | @ v).
m eIl (p,v
]R

Dual Problem

|

(2)+9(y)—|lz—y|*

OT,(p,v) = max ]Eu(f) +E,(g9) — 202( [f e 202 dp(z)de(y) — 1).
feL2 RéxRd
gEEz( )
Sinkorn iterations Primal-Dual Relationship
=lle=y|*+fn () F*(@)+9* ()= llz—y|l?
n+1(y) = —20%log / 207 dp(z), dd/er/ (z,y) =e 207
—llz—yll+gn+1() yH2+gn+1(y) ’
frq1(z) = =202 log/ dv(y). (frr gn) s (f*, g%)
n—-+0o

[21] M. Cuturi. “Sinkhorn distances: Lightspeed computation of OT". Neur/PS. 2013.
32 /41



Related Work

o Prior work in economics and control theory [BG16]?21& [CGP16][?3]:
closed forms for Gaussian Ent-OT.

o Subsequent work [MGM20][?41& [BL20]1?%]: closed forms for Gaussian
Ent-OT & Sinkhorn barycenters restricted to Gaussian measures.

Novel contributions (Janati, Muzellec, et al. 2020)

© Properties of Entropic Bures: convexity, gradients, minimizers;
@ Sinkhorn barycenters restricted to sub-Gaussian measures;
© Closed forms for unbalanced Ent-OT with Gaussians.

4

[22] R. Bojilov et al. “Matching in closed-form: equilibrium, identification, and comparative
statics”. Economic Theory [2016].
[23] Y. Chen, T. T. Georgiou, & M. Pavon. “On the relation between optimal transport and
Schrédinger bridges: A stochastic control viewpoint”. Jour. of Optim. Th. and App. [2016].
[24] A. Mallasto et al. “Entropy-Regularized 2-Wasserstein Distance between Gaussian Measures”.
arXiv preprint [2020].
[25] E. del Barrio et al. “The statistical effect of entropic regularization in optimal transportation”.
arXiv preprint [2020].

33 /41



Entropic OT for Gaussians

Theorem (Janati, Muzellec, et al. 2020)
Let A,B e S% , a~AN(a,A) and 3 ~ N(b,B).
Let D, = (4AY/2BAY/2 1 5*14)'/2. Then,

OT,(a, f) = la — bl|* + B (A, B), where

B2(A,B) = Tr(A + B — D,) + o%logdet (Dy + 0214) + do?(1 — log(20?)).

Moreover, the entropic optimal transportation plan is also a Gaussian over
2

RY < R%: 7w =N ((3), (& B ), with Co = $A12D,A7Y2 — 21y

\

Proposition (Janati, Muzellec, et al. 2020)

=il
o VABL(A,B) = I — BV2((BY/2ABY2 + $1y)/2 + 51,) B2,

e B2(A,B) is convex in A and in B, but not jointly.

\

34 /41



Some elements of the proof

@ The optimal potentials (f*, g*) contain all the information;

: . : : f
@ Sinkhorn iterations preserve quadratic forms Q(H) e s 2TH,

Lemma (Janati, Muzellec, et al. 2020)

o Let Uy =V =0, fo =9(Up),g0 = 29(Vo)
o ThenVn >0, 4% = Q(U,) and &2 = Q(V,,), with

20 202 —
1 _ _
Vg1 = ﬁ((U2Un + A 417 - 1Y),

1 _ _
Uyt = ?((UQVnJrI +0’B7 +1y) " - L).

v

After change of variables: G,+1 = o?B~ 1+ F,;l, F,1=0c?A 1+ GT_L}H.

Leads to fixed-point equation C2 + ¢2C, — AB = 0. )

35 /41



Sinkhorn Debiased Barycenters for Gaussians

Sinkhorn Divergences!?°]

S & (1,0) = OTy (1, ) = L(OTy (1, 1) + OT4 (v, 1)

Theorem (Janati, Muzellec, et al. 2020)

0o g {p € Pa|3q > 0, E#(eq”X”2) < +o0} (sub-Gaussian measures).
o (v ~ /\/'(ak, Ak), wy € Ry k=1,...,K,s.t. Zszl wg = 1.

The debiased barycenter ~ 3(be7) et argmingeg K wiSs(ag, B)

is given by B = N (S5 wiag, B), where B € 8% is a solution of

ZU,'].C(BI/2A]€B1/2 + )1/2 (B2 fo d)1/2-
k=1

Generalizes the Bures barycenter equation[27].

[26] A. Genevay, G. Peyre, et al. “Learning Generative Models with Sinkhorn Divergences”. AlS-
TATS. 2018.

[27] M. Agueh et al. “Barycenters in the Wasserstein space”. SIAM [2011]. 36 / 41



Entropy-regularized Unbalanced OT

Remove the 7 € TI(j1, v) constraints, replace them with a KL penalty. J

Unblanced Ent-QT281129]

V0T (1) inf, { [[ 12 = ylPan(e,p) + 20 Ki(mlln @ v)
reM Rded

+vKL(m||p) + yKL(mo[0)}. (1)

Proposition

| A\

Assume 7 is a solution of (1). Then

UOT, ., (11, v) = y(my,, +my) + 202m,m, — 2(a + y)7*(R? x RY). (2)

4

[28] C. Frogner et al. “Learning with a Wasserstein Loss”. Neur/PS. 2015.

[29] L. Chizat. “Unbalanced optimal transport: Models, numerical methods, applications”. PhD
thesis. 2017. 37 /41



Entropic Unbalanced OT for Gaussians

Theorem (Janati, Muzellec, et al. 2020)

Let « = m N (a, A) and 5 = mgN (b,B) be two unnormalized Gaussian
measures. Then

@ The unbalanced optimal transport plan, minimizer of (1), is an
unnormalized Gaussian over R x R?: 7* = m+ N\ (m, H),

o UOT, ., can be derived using (2) with 7*(R? x R?) = m+.

e m,H and m, are in closed form.

Contrary to balanced (entropic) OT, we cannot consider the centered
problem without loss of generality!

38 /41



Some elements of the proof

Unbalanced Ent-OT: Dual Problem[3°

_f _g —llz=yl?+f(2)+9 ()

sup {vad(l —e 1)+ fra(l—e 7)dv —202 [ (e 50 = 1)d;1,(x)dy(y)}.
feLa(p) R xR4
g€L2(v)
Generalized Sinkorn iterations!®’] Primal-Dual Relationship

—llz=y||?+fn(z) A @) +a* ()= llz—y|?

In+1(y) = —7 log /R e 207 dp(x), m(w, y) =e 202

. —llz=yl>+gn+1(y)

fo+1(z) = — log/ e 202 dv(y). def

Rd = —F/5
v+20

Stable parameterization (Janati, Muzellec, et al. 2020)

7@5’2() = —3(z"Upx — 22T u,) + log(mu,,), ‘q;fzt) = —1(z"Vux — 22T v,) + log(my,).

Solve for U*, V* u*, v*, m,* and m,* (fixed-point equations).

[30] L. Chizat. “Unbalanced optimal transport: Models, numerical methods, applications”. PhD

thesis. 2017.
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Numerical Experiments
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Figure 4: Effect of regularization on balanced transportation plans.
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Figure 5: Effect of ¢ in balanced OT and + in unbalanced OT. Empirical plans
(red) correspond to the expected Gaussian contours depicted in black.
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Take-home messages

A common approach is to regularize OT problems. But regularizing data to
fall back to closed form solutions of OT is also a powerful approach in ML.

<

The Bures-Wasserstein geometry has all the tools and properties
to scale to large ML gradient-based applications.

Maps and plans defined on the full space can be extracted after projecting
distributions to lower dimension, in closed forms for Gaussians.

The Bures-Wasserstein geometry can seamlessly incorporate
entropic and unbalanced regularization, in closed form.

What | did not talk about
Missing data imputation with entropic OT (Chapter 5)

41/ 4



References |

[4 Agueh, M. & G. Carlier. “Barycenters in the Wasserstein space”.
SIAM (2011).

E Arjovsky, M., S. Chintala, & L. Bottou. “Wasserstein Generative
Adversarial Networks”. /CML. 2017.

[ Barrio, E. del & J.-M. Loubes. “The statistical effect of entropic
regularization in optimal transportation”. arXiv preprint (2020).

[4 Benamou, J.-D. & Y. Brenier. “A computational fluid mechanics
solution to the Monge-Kantorovich mass transfer problem”. Numerische
Mathematik (2000).

[4 Berkes, I. & W. Philipp. “An almost sure invariance principle for the
empirical distribution function of mixing random variables”. Probability
Theory and Rel. Fields (1977).

[4 Bhatia, R., T. Jain, & Y. Lim. “On the Bures-Wasserstein distance
between positive definite matrices”. Expositiones Mathematicae (2018).

42 / 41



References |l

[ Blondel, M., V. Seguy, & A. Rolet. “Smooth and sparse optimal
transport”. AISTATS. 2018.

& Bojilov, R. & A. Galichon. “Matching in closed-form: equilibrium,
identification, and comparative statics”. Economic Theory (2016).

[4 Bonneel, N. et al. “Sliced and Radon Wasserstein Barycenters of
Measures”. Journal of Mathematical Imaging and Vision (2015).

[4 Brenier, Y. “Décomposition polaire et réarrangement monotone des
champs de vecteurs”. CR Acad. Sci. Paris Sér. | Math. (1987).

[4 Bures, D. “An extension of Kakutani's theorem on infinite product
measures to the tensor product of semifinite w*-algebras”. Trans. of the
Am. Math. Soc. (1969).

@ Chen, Y., T. T. Georgiou, & A. Tannenbaum. “Optimal Transport for
Gaussian Mixture Models”. |EEE Access (2019).

43 / 41



References IlI

[4 Chen, Y., T. T. Georgiou, & M. Pavon. “On the relation between
optimal transport and Schrédinger bridges: A stochastic control
viewpoint”. Jour. of Optim. Th. and App. (2016).

[4 Chizat, L. “Unbalanced optimal transport: Models, numerical
methods, applications”. PhD thesis. 2017.

[4 Chizat, L. et al. “Scaling algorithms for unbalanced optimal transport
problems”. Mathematics of Computation (2018).

[4  Cuturi, M. “Sinkhorn distances: Lightspeed computation of OT".
NeurlPS. 2013.

@ Dessein, A., N. Papadakis, & J.-L. Rouas. “Regularized optimal
transport and the rot mover's distance”. The Journal of Machine
Learning Research 19.1 (2018), pp. 590-642.

[ Dowson, D. & B. Landau. “The Fréchet distance between
multivariate normal distributions”. Journal of multivariate analysis
(1982).

a4 / 41



References IV

[4 Frogner, C. et al. "Learning with a Wasserstein Loss". Newur/PS. 2015.

[ Gelbrich, M. “On a formula for the L2 Wasserstein metric between
measures on Euclidean and Hilbert spaces”. Mathematische Nachrichten
(1990).

[4 Genevay, A., M. Cuturi, et al. “Stochastic optimization for large-scale
OT". NeurlPS. 2016.

@ Genevay, A., G. Peyre, & M. Cuturi. “Learning Generative Models
with Sinkhorn Divergences”. AISTATS. 2018.

[4 Heusel, M. et al. “GANs Trained by a Two Time-Scale Update Rule
Converge to a Local Nash Equilibrium”. NeurlPS. 2017.

[d Higham, N. J. Functions of Matrices: Theory and Computation.
SIAM, 2008.

[4 Janati, H. et al. “Entropic Optimal Transport between (Unbalanced)
Gaussian Measures has a Closed Form". Neur/PS (2020).

45 / 41



References V

@ Kantorovich, L. V. “On the translocation of masses”. Dok/. Akad.
Nauk. USSR. 1942.

[4  Kolouri, S. et al. “Generalized sliced Wasserstein distances”.
NeurlPS. 2019.

[ Makkuva, A. V. et al. “Optimal transport mapping via input convex
neural networks”. /CML (2020).

[ Mallasto, A., A. Gerolin, & H. Q. Minh. “Entropy-Regularized
2-Wasserstein Distance between Gaussian Measures”. arXiv preprint
(2020).

[§  Mérigot, Q. “A multiscale approach to optimal transport”. Comp.
Grap. Forum. 2011.

[4  Mikolov, T. et al. “Distributed representations of words and phrases
and their compositionality”. Neur/PS. 2013,

[4 Monge, G. “Mémoire sur la théorie des déblais et des remblais”.
Histoire de I’Académie Royale des Sciences de Paris (1781).

46 / 41



References VI

[4 Muzellec, B. & M. Cuturi. “Generalizing Point Embeddings using the
Woasserstein Space of Elliptical Distributions”. Neur/PS. 2018.

[4 - .“Subspace detours: Building transport plans that are optimal on
subspace projections”. Neur/PS. 2019.

[4 Muzellec, B., J. Josse, et al. “Missing Data Imputation using
Optimal Transport”. /CML (2020).

[4  Muzellec, B., R. Nock, et al. “Tsallis regularized optimal transport
and ecological inference”. AAAI 2017.

[4 Muzellec, B., K. Sato, et al. “Dimension-free convergence rates for
gradient Langevin dynamics in RKHS". arXiv preprint (2020).

[4 Nickel, M. & D. Kiela. “Poincaré Embeddings for Learning
Hierarchical Representations”. NeurlPS. 2017.

[4 Olkin, |I. & F. Pukelsheim. “The distance between two random
vectors with given dispersion matrices”. Linear Algebra and its
Applications (1982).

47 /41



References VII

[§ Paty, F-P. & M. Cuturi. “Subspace Robust Wasserstein Distances”.
ICML. 20109.

[4 Rabin, J. et al. “Wasserstein barycenter and its application to texture
mixing”. SSVIM. 2011.

[ Schiebinger, G. et al. “Optimal-transport analysis of single-cell gene
expression identifies developmental trajectories in reprogramming”. Cell
(2019).

[4 Seguy, V. et al. “Large-Scale Optimal Transport and Mapping
Estimation”. /CLR. 2018.

[4  Solomon, J. et al. “Convolutional wasserstein distances: Efficient
optimal transportation on geometric domains”. TOG (2015).

[§ Takatsu, A. “Wasserstein geometry of Gaussian measures”. Osaka J.
Math. (2011).

[4 Titouan, V. et al. “Sliced Gromov-Wasserstein”. Neur/PS. 2019.

[ Villani, C. Optimal transport: old and new. 2008.

48 / 41



References VIII

[ Vilnis, L. & A. McCallum. “Word representations via Gaussian
embedding”. /CLR (2015).

49 / 41



	Reminders: The Bures-Wasserstein Geometry on Elliptical Distributions
	Learning with BW: Computing and Differentiating BW [NeurIPS'18]
	Building OT Plans on Subspace Projections [NeurIPS'19]
	Unbalanced Entropic OT for Gaussian Measures [NeurIPS'20]
	Appendix

