The Bures-Wasserstein Distance for Machine Learning

Boris Muzellec

ENSAE - =

Based joint work with Marco Cuturi

Outline

- 1. A (quick) intro to OT
- 2. The Bures-Wasserstein distance
- 3. Optimization with Bures distances
- 4. Applications

I. An intro to OT

- 1. "Vertically":
 - Look at differences between densities:

$$|p(x)-q(x)|$$
 or $\frac{p(x)}{q(x)}$

1. "Vertically":

Look at differences between densities:

$$|p(x)-q(x)|$$
 or $\frac{p(x)}{q(x)}$

Make something useful out of them:

$$TV(\boldsymbol{\mu}, \boldsymbol{\nu}) = \sup_{A \in \mathcal{B}} \left| \int \mathbb{1}_A(x) \boldsymbol{p}(x) dx - \int \mathbb{1}_A(x) \boldsymbol{q}(x) dx \right|$$

(Total variation)

$$D_{\mathrm{KL}}(\mu, \nu) = \int \log \frac{p(x)}{q(x)} p(x) dx$$

(Kullback-Leibler)

$$D_f(\mu, \nu) = \int f\left(\frac{\mathbf{p}(x)}{\mathbf{q}(x)}\right) \mathbf{q}(x) dx$$

(f-divergences)

(...)

2. "Horizontally":

2. "Horizontally":

$$\int \int ||x - y||^2 d\mu(x) d\nu(y) ?$$

2. "Horizontally":

2. "Horizontally":

$$\inf_{T} \int \|x - T(x)\|^2 d\mu(x)$$

2. "Horizontally":

2. "Horizontally":

$$\inf_{T:T_{\sharp}\mu=\nu}\int \|x-T(x)\|^2d\mu(x)$$

$$T_\sharp \mu = {\color{red}
u} \quad {\it iff} \quad X \sim \mu \implies T(X) \sim {\color{red}
u}$$

2. "Horizontally":

Look at distances on the supports:

$$\inf_{T:T_{\sharp}\mu=\nu}\int \|x-T(x)\|^2 d\mu(x)$$

$$T_\sharp \mu = {\color{red}
u} \quad {\it iff} \quad X \sim \mu \implies T(X) \sim {\color{red}
u}$$

"T pushes forward μ to ν "

"T is a Monge map from μ to ν "

(2-)Wasserstein Distances

Monge version

Prop. When a Monge map T exists,

$$W_2^2(\mu, \nu) = \inf_{T_{\sharp}\mu = \nu} \int_{\Omega} \|x - T(x)\|^2 \mu(dx)$$

(2-) Wasserstein Distances

Monge version

Prop. When a Monge map T exists,

$$W_2^2(\mu, \nu) = \inf_{T_{\sharp}\mu = \nu} \int_{\Omega} \|x - T(x)\|^2 \mu(dx)$$

Kantorovich version

Def. The 2-Wasserstein distance between $\mu, \nu \in P(\Omega)$ is

$$W_2^2(\mu, \nu) \stackrel{\text{def}}{=} \inf_{\gamma \in \Pi(\mu, \nu)} \int_{\Omega} \|x - y\|^2 d\gamma(x, y)$$

$$\Pi(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text{def}}{=} \{ \boldsymbol{P} \in \mathcal{P}(\Omega \times \Omega) | \forall \boldsymbol{A}, \boldsymbol{B} \subset \Omega, \\ \boldsymbol{P}(\boldsymbol{A} \times \Omega) = \boldsymbol{\mu}(\boldsymbol{A}), \boldsymbol{P}(\Omega \times \boldsymbol{B}) = \boldsymbol{\nu}(\boldsymbol{B}) \}$$

"Couplings"

"Kantorovich / transportation plans"

Monge maps: existence

Prop. For "well behaved" costs c, if μ has a density then an *optimal* Monge map T^* between μ and ν must exist.

Monge maps: existence

Prop. For "well behaved" costs c, if μ has a density then an *optimal* Monge map T^* between μ and ν must exist.

Link between Monge maps and Kantorovitch plans:

$$\gamma^\star = (\mathrm{Id}, T^\star)_\sharp \mu$$

- Discrete/Discrete:
 - LP with $O(n^3 \log n)$ complexity using network simplex
 - Better with (entropic) regularization [Cuturi'13, Genevay et al.'16, Altschuler et al.'17...]

- Discrete/Discrete:
 - LP with $O(n^3 \log n)$ complexity using network simplex
 - Better with (entropic) regularization [Cuturi'13, Genevay et al.'16, Altschuler et al.'17...]

- Discrete/Continous:
 - Ok-ish... (Laguerre tesselations)

- Discrete/Discrete:
 - LP with $O(n^3 \log n)$ complexity using network simplex
 - Better with (entropic) regularization [Cuturi'13, Genevay et al.'16, Altschuler et al.'17...]

- Discrete/Continous:
 - Ok-ish... (Laguerre tesselations)

- Continuous/Continuous: ?
 - Closed form: elliptical distributions (next slides)

II. The Wasserstein-Bures Distance

Elliptical Distributions

« Def. » Probability measures with densities

$$f(\mathbf{x}) = \frac{1}{\sqrt{|\mathbf{C}|}} h((\mathbf{x} - \mathbf{m})^{\mathsf{T}} \mathbf{C}^{-1} (\mathbf{x} - \mathbf{m}))$$

where
$$\int_{\mathbb{R}^d} h(\|\mathbf{x}\|^2) d\mathbf{x} = 1$$
, $\mathbf{C} \in S_n^+$

Examples:

- Multivariate normal distributions
- Elliptical uniform distributions
- (Multivariate) t-Student...

OT for Elliptical Distributions

[Gelbrich'90]

Prop. If $\alpha, \beta \in P(\mathbb{R}^d)$ are elliptical distributions (from the same family), then

$$W_2^2(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \|\mathbf{m}_{\boldsymbol{\alpha}} - \mathbf{m}_{\boldsymbol{\beta}}\|_2^2 + \mathfrak{B}^2(\text{cov}\boldsymbol{\alpha}, \text{cov}\boldsymbol{\beta})$$

$$\mathfrak{B}^2(\mathbf{A},\mathbf{B})\stackrel{\mathrm{def}}{=}\mathrm{Tr}\mathbf{A}+\mathrm{Tr}\mathbf{B}-2\mathrm{Tr}(\mathbf{A}^{\frac{1}{2}}\mathbf{B}\mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}}$$
 is the (squared) *Bures* distance

OT for Elliptical Distributions

[Gelbrich'90]

Prop. If $\alpha, \beta \in P(\mathbb{R}^d)$ are elliptical distributions (from the same family), then

$$W_2^2(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \|\mathbf{m}_{\boldsymbol{\alpha}} - \mathbf{m}_{\boldsymbol{\beta}}\|_2^2 + \mathfrak{B}^2(\text{cov}\boldsymbol{\alpha}, \text{cov}\boldsymbol{\beta})$$

$$\mathfrak{B}^2(\mathbf{A}, \mathbf{B}) \stackrel{\text{def}}{=} \operatorname{Tr} \mathbf{A} + \operatorname{Tr} \mathbf{B} - 2\operatorname{Tr} (\mathbf{A}^{\frac{1}{2}} \mathbf{B} \mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}}$$
 is the (squared) *Bures* distance

Prop. If $\alpha, \beta \in P(\mathbb{R}^d)$ are elliptical distributions with $cov\alpha = A, cov\beta = B$, then

$$T(\mathbf{x}) = \mathbf{m}_{\beta} + \mathbf{T}^{AB}(\mathbf{x} - \mathbf{m}_{\alpha})$$
 is the optimal Monge map

where
$$\mathbf{T}^{\mathbf{AB}} \stackrel{\text{def}}{=} \mathbf{A}^{-\frac{1}{2}} (\mathbf{A}^{\frac{1}{2}} \mathbf{B} \mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}} \mathbf{A}^{-\frac{1}{2}}$$
 is s.t. $\mathbf{T}^{\mathbf{AB}} \mathbf{A} \mathbf{T}^{\mathbf{AB}} = \mathbf{B}$

$$T_{\sharp}\alpha = \beta$$

A lower bound

• What if α , β are not elliptical?

A lower bound

• What if α , β are not elliptical?

Prop. Wasserstein-Bures is a lower bound of Wasserstein.

$$W_2^2(\boldsymbol{\alpha}, \boldsymbol{\beta}) \ge \|\mathbf{m}_{\boldsymbol{\alpha}} - \mathbf{m}_{\boldsymbol{\beta}}\|_2^2 + \mathfrak{B}^2(\text{cov}\boldsymbol{\alpha}, \text{cov}\boldsymbol{\beta})$$

$$\mathfrak{B}^2(\mathbf{A},\mathbf{B}) \stackrel{\text{def}}{=} \operatorname{Tr}\mathbf{A} + \operatorname{Tr}\mathbf{B} - 2\operatorname{Tr}(\mathbf{A}^{\frac{1}{2}}\mathbf{B}\mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}}$$
 is the (squared) *Bures* distance

A Lemma

$$\mathfrak{B}^2(\mathbf{A}, \mathbf{B}) \stackrel{\text{def}}{=} \text{Tr}\mathbf{A} + \text{Tr}\mathbf{B} - 2\text{Tr}(\mathbf{A}^{\frac{1}{2}}\mathbf{B}\mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}}$$

Lemma. [Bhatia et al.'17]

$$F(\mathbf{A}, \mathbf{B}) \stackrel{\text{def}}{=} \text{Tr}(\mathbf{A}^{\frac{1}{2}} \mathbf{B} \mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}}$$
$$= \max\{\text{tr} \mathbf{X} : \begin{pmatrix} \mathbf{A} & \mathbf{X} \\ \mathbf{X}^T & \mathbf{B} \end{pmatrix} \ge 0\}$$

Lower bound

Prop.

$$W_2^2(\boldsymbol{\alpha}, \boldsymbol{\beta}) \ge \|\mathbf{m}_{\boldsymbol{\alpha}} - \mathbf{m}_{\boldsymbol{\beta}}\|_2^2 + \mathfrak{B}^2(\text{cov}\boldsymbol{\alpha}, \text{cov}\boldsymbol{\beta})$$

With
$$\mathfrak{B}^2(\mathbf{A}, \mathbf{B}) \stackrel{\text{def}}{=} \operatorname{Tr}\mathbf{A} + \operatorname{Tr}\mathbf{B} - 2F(\mathbf{A}, \mathbf{B})$$
 $F(\mathbf{A}, \mathbf{B}) = \max\{\operatorname{tr}\mathbf{X} : \begin{pmatrix} \mathbf{A} & \mathbf{X} \\ \mathbf{X}^T & \mathbf{B} \end{pmatrix} \ge 0\}$

Proof. (centered case)

Lower bound

Prop.

$$W_2^2(\boldsymbol{\alpha}, \boldsymbol{\beta}) \ge \|\mathbf{m}_{\boldsymbol{\alpha}} - \mathbf{m}_{\boldsymbol{\beta}}\|_2^2 + \mathfrak{B}^2(\text{cov}\boldsymbol{\alpha}, \text{cov}\boldsymbol{\beta})$$

With $\mathfrak{B}^2(\mathbf{A}, \mathbf{B}) \stackrel{\text{def}}{=} \operatorname{Tr}\mathbf{A} + \operatorname{Tr}\mathbf{B} - 2F(\mathbf{A}, \mathbf{B})$ $F(\mathbf{A}, \mathbf{B}) = \max\{\operatorname{tr}\mathbf{X} : \begin{pmatrix} \mathbf{A} & \mathbf{X} \\ \mathbf{X}^T & \mathbf{B} \end{pmatrix} \ge 0\}$

Proof.
$$W_2^2(\mu, \nu) \stackrel{\mathrm{def}}{=} \min_{\gamma \in \Pi(\mu, \nu)} \mathbb{E}_{(X,Y) \sim \gamma} \left[\|X - Y\|^2 \right]$$
 (centered case)
$$= \mathrm{Tr} \mathbf{A} + \mathrm{Tr} \mathbf{B} - 2 \max_{\gamma \in \Pi(\mu, \nu)} \mathrm{Tr} [Cov_{\gamma}(X, Y)]$$

Lower bound

Prop.

$$W_2^2(\boldsymbol{\alpha}, \boldsymbol{\beta}) \ge \|\mathbf{m}_{\boldsymbol{\alpha}} - \mathbf{m}_{\boldsymbol{\beta}}\|_2^2 + \mathfrak{B}^2(\text{cov}\boldsymbol{\alpha}, \text{cov}\boldsymbol{\beta})$$

With $\mathfrak{B}^2(\mathbf{A}, \mathbf{B}) \stackrel{\text{def}}{=} \operatorname{Tr}\mathbf{A} + \operatorname{Tr}\mathbf{B} - 2F(\mathbf{A}, \mathbf{B})$ $F(\mathbf{A}, \mathbf{B}) = \max\{\operatorname{tr}\mathbf{X} : \begin{pmatrix} \mathbf{A} & \mathbf{X} \\ \mathbf{X}^T & \mathbf{B} \end{pmatrix} \ge 0\}$

Proof. W2
$$(\mu, \nu) \stackrel{\text{def}}{=} \min_{\gamma \in \Pi(\mu, \nu)} \mathbb{E}_{(X, Y) \sim \gamma} \left[\|X - Y\|^2 \right]$$
 (centered case)
$$= \text{Tr}\mathbf{A} + \text{Tr}\mathbf{B} - 2 \max_{\gamma \in \Pi(\mu, \nu)} \text{Tr}[Cov_{\gamma}(X, Y)]$$

But
$$\gamma \in \Pi(\mu, \nu) \implies \operatorname{cov}(\gamma) = \begin{pmatrix} \mathbf{A} & \operatorname{Cov}_{\gamma}(X, Y) \\ \operatorname{Cov}_{\gamma}(X, Y)^T & \mathbf{B} \end{pmatrix} \geq 0$$

Lower bound

Prop.

$$W_2^2(\boldsymbol{\alpha}, \boldsymbol{\beta}) \ge \|\mathbf{m}_{\boldsymbol{\alpha}} - \mathbf{m}_{\boldsymbol{\beta}}\|_2^2 + \mathfrak{B}^2(\text{cov}\boldsymbol{\alpha}, \text{cov}\boldsymbol{\beta})$$

With $\mathfrak{B}^2(\mathbf{A}, \mathbf{B}) \stackrel{\text{def}}{=} \operatorname{Tr}\mathbf{A} + \operatorname{Tr}\mathbf{B} - 2F(\mathbf{A}, \mathbf{B})$ $F(\mathbf{A}, \mathbf{B}) = \max\{\operatorname{tr}\mathbf{X} : \begin{pmatrix} \mathbf{A} & \mathbf{X} \\ \mathbf{X}^T & \mathbf{B} \end{pmatrix} \ge 0\}$

Proof. W2(
$$\mu, \nu$$
) $\stackrel{\text{def}}{=} \min_{\gamma \in \Pi(\mu, \nu)} \mathbb{E}_{(X,Y) \sim \gamma} \left[\|X - Y\|^2 \right]$ (centered case)
$$= \text{Tr}\mathbf{A} + \text{Tr}\mathbf{B} - 2 \max_{\gamma \in \Pi(\mu, \nu)} \text{Tr}[Cov_{\gamma}(X, Y)]$$

But
$$\gamma \in \Pi(\mu, \nu) \implies \operatorname{cov}(\gamma) = \begin{pmatrix} \mathbf{A} & \operatorname{Cov}_{\gamma}(X, Y) \\ \operatorname{Cov}_{\gamma}(X, Y)^T & \mathbf{B} \end{pmatrix} \geq 0$$

Hence
$$\forall \gamma \in \Pi(\mu, \nu), \quad \operatorname{Tr}[Cov_{\gamma}(X, Y)] \leq F(A, B)$$

How tight is this bound?

• Q: Is there an equality case?

• Q: (Matching) upper bound?

How tight is this bound?

• Q: Is there an equality case?

• A: Yes —> Elliptical distributions

• Q: (Matching) upper bound?

How tight is this bound?

- Q: Is there an equality case?
 - A: Yes —> Elliptical distributions

- Q: (Matching) upper bound?
 - A: ... (independent coupling)

$$W_2^2(\boldsymbol{\mu}, \boldsymbol{\nu}) \leq \|\mathbf{m}_{\boldsymbol{\mu}} - \mathbf{m}_{\boldsymbol{\nu}}\|_2^2 + \text{Tr}\mathbf{A} + \text{Tr}\mathbf{B}$$

Lemma. [Bhatia et al.'17]

$$\arg\max\{\operatorname{tr}\mathbf{X}: \left(\begin{smallmatrix}\mathbf{A} & \mathbf{X} \\ \mathbf{X}^T & \mathbf{B}\end{smallmatrix}\right) \ge 0\} = (\mathbf{A}\mathbf{B})^{\frac{1}{2}} = \mathbf{A}\mathbf{T}^{\mathbf{A}\mathbf{B}}$$

$$\gamma, \mu,
u$$
 such that $Cov_{\gamma}(X, Y) = \mathbf{AT^{AB}}$?

Lemma. [Bhatia et al.'17]

$$\arg\max\{\operatorname{tr}\mathbf{X}: \left(\begin{smallmatrix}\mathbf{A} & \mathbf{X} \\ \mathbf{X}^T & \mathbf{B}\end{smallmatrix}\right) \ge 0\} = (\mathbf{AB})^{\frac{1}{2}} = \mathbf{AT}^{\mathbf{AB}}$$

$$\gamma, \mu,
u$$
 such that $Cov_{\gamma}(X, Y) = \mathbf{AT^{AB}}$?

$$\operatorname{rk}[\operatorname{cov}(\gamma)] = \operatorname{rk}\left(\underset{\mathbf{T}^{\mathbf{A}_{\mathbf{B}}} \mathbf{A}}{\overset{\mathbf{A}^{\mathbf{T}^{\mathbf{A}_{\mathbf{B}}}}}{\mathbf{B}}} \right) = d \quad (< 2d)$$

Lemma. [Bhatia et al.'17]

$$\arg\max\{\operatorname{tr}\mathbf{X}: \left(\begin{smallmatrix}\mathbf{A} & \mathbf{X} \\ \mathbf{X}^T & \mathbf{B}\end{smallmatrix}\right) \ge 0\} = (\mathbf{AB})^{\frac{1}{2}} = \mathbf{AT}^{\mathbf{AB}}$$

$$\gamma, \mu,
u$$
 such that $Cov_{\gamma}(X, Y) = \mathbf{AT}^{\mathbf{AB}}$?

$$\operatorname{rk}[\operatorname{cov}(\gamma)] = \operatorname{rk}\left(\underset{\mathbf{T}^{\mathbf{A}_{\mathbf{B}}} \mathbf{A}}{\overset{\mathbf{A}^{\mathbf{T}^{\mathbf{A}_{\mathbf{B}}}}}{\mathbf{B}}} \right) = d \quad (< 2d)$$

• γ is the law of (X, Y) with $X \sim \mu, Y \sim \nu$ and $Y = \mathbf{T}^{AB}X$.

Lemma. [Bhatia et al.'17]

$$\arg\max\{\operatorname{tr}\mathbf{X}: \left(\begin{smallmatrix}\mathbf{A} & \mathbf{X} \\ \mathbf{X}^T & \mathbf{B}\end{smallmatrix}\right) \ge 0\} = (\mathbf{AB})^{\frac{1}{2}} = \mathbf{AT}^{\mathbf{AB}}$$

$$\gamma, \mu,
u$$
 such that $Cov_{\gamma}(X, Y) = \mathbf{AT^{AB}}$?

$$\operatorname{rk}[\operatorname{cov}(\gamma)] = \operatorname{rk}\left(\underset{\mathbf{T}^{\mathbf{A}_{\mathbf{B}}} \mathbf{A}}{\overset{\mathbf{A}^{\mathbf{T}^{\mathbf{A}_{\mathbf{B}}}}}{\mathbf{B}}} \right) = d \quad (< 2d)$$

- γ is the law of (X, Y) with $X \sim \mu, Y \sim \nu$ and $Y = T^{AB}X$.
- Implies $\nu = (T^{AB})_{\sharp}\mu$ and $T^{AB}AT^{AB} = B$ (Riccati equation).

Lemma. [Bhatia et al.'17]

$$\arg\max\{\operatorname{tr}\mathbf{X}: \left(\begin{smallmatrix}\mathbf{A} & \mathbf{X} \\ \mathbf{X}^T & \mathbf{B}\end{smallmatrix}\right) \ge 0\} = (\mathbf{A}\mathbf{B})^{\frac{1}{2}} = \mathbf{A}\mathbf{T}^{\mathbf{A}\mathbf{B}}$$

$$\gamma, \mu,
u$$
 such that $Cov_{\gamma}(X, Y) = \mathbf{AT}^{\mathbf{AB}}$?

$$\operatorname{rk}[\operatorname{cov}(\gamma)] = \operatorname{rk}\left(\underset{\mathbf{T}^{\mathbf{A}_{\mathbf{B}}} \mathbf{A}}{\overset{\mathbf{A}^{\mathbf{T}^{\mathbf{A}_{\mathbf{B}}}}}{\mathbf{B}}} \right) = d \quad (< 2d)$$

- γ is the law of (X, Y) with $X \sim \mu, Y \sim \nu$ and $Y = \mathbf{T}^{AB}X$.
- Implies $\nu = (T^{AB})_{\sharp}\mu$ and $T^{AB}AT^{AB} = B$ (Riccati equation).
- e.g. μ , ν are from the same *elliptical family*.

Elliptical Distributions

« Def. » Probability measures with densities

$$f(\mathbf{x}) = \frac{1}{\sqrt{|\mathbf{C}|}} h((\mathbf{x} - \mathbf{m})^{\mathsf{T}} \mathbf{C}^{-1} (\mathbf{x} - \mathbf{m}))$$

where
$$\int_{\mathbb{R}^d} h(\|\mathbf{x}\|^2) d\mathbf{x} = 1$$
, $\mathbf{C} \in S_n^+$

Examples:

- Multivariate normal distributions
- Elliptical uniform distributions
- (Multivariate) t-Student...

III. Working with the Bures distance

Issues

$$\mathfrak{B}^{2}(\mathbf{A}, \mathbf{B}) \stackrel{\text{def}}{=} \operatorname{Tr} \mathbf{A} + \operatorname{Tr} \mathbf{B} - 2\operatorname{Tr} (\mathbf{A}^{\frac{1}{2}} \mathbf{B} \mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}}$$
$$= \operatorname{Tr} \mathbf{A} + \operatorname{Tr} \mathbf{B} - 2\operatorname{Tr} (\mathbf{A} \mathbf{B})^{\frac{1}{2}}$$

- 1. How to compute matrix roots (in a scalable way)?
- 2. How to compute gradients?
- 3. Can I avoid projections on the PSD cone?

$$\mathfrak{B}^2(\mathbf{A}, \mathbf{B}) \stackrel{\text{def}}{=} \operatorname{Tr}\mathbf{A} + \operatorname{Tr}\mathbf{B} - 2\operatorname{Tr}(\mathbf{A}^{\frac{1}{2}}\mathbf{B}\mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}}$$

$$\mathfrak{B}^2(\mathbf{A}, \mathbf{B}) \stackrel{\text{def}}{=} \operatorname{Tr}\mathbf{A} + \operatorname{Tr}\mathbf{B} - 2\operatorname{Tr}(\mathbf{A}^{\frac{1}{2}}\mathbf{B}\mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}}$$

- Option 1: SVD
 - $O(n^3)$ complexity
 - Batched version?

$$\mathfrak{B}^2(\mathbf{A}, \mathbf{B}) \stackrel{\text{def}}{=} \operatorname{Tr}\mathbf{A} + \operatorname{Tr}\mathbf{B} - 2\operatorname{Tr}(\mathbf{A}^{\frac{1}{2}}\mathbf{B}\mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}}$$

$$\mathfrak{B}^2(\mathbf{A}, \mathbf{B}) \stackrel{\text{def}}{=} \operatorname{Tr}\mathbf{A} + \operatorname{Tr}\mathbf{B} - 2\operatorname{Tr}(\mathbf{A}^{\frac{1}{2}}\mathbf{B}\mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}}$$

- Option 2: Iterations? e.g.
 - Babylonian algorithm

$$\mathbf{X}_{k+1} = \frac{1}{2} (\mathbf{X}_k + \mathbf{X}_k^{-1} \mathbf{A}), \qquad \mathbf{X}_0 = \mathbf{A}$$

$$\lim_{k \to \infty} \mathbf{X}_k = \mathbf{A}^{\frac{1}{2}} \quad (\text{if } \max_{ij} \frac{1}{2} |1 - \lambda_i^{1/2} \lambda_j^{-1/2}| < 1)$$

$$\mathfrak{B}^2(\mathbf{A}, \mathbf{B}) \stackrel{\text{def}}{=} \operatorname{Tr}\mathbf{A} + \operatorname{Tr}\mathbf{B} - 2\operatorname{Tr}(\mathbf{A}^{\frac{1}{2}}\mathbf{B}\mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}}$$

- Option 2: Iterations? e.g.
 - Babylonian algorithm

$$\mathbf{X}_{k+1} = \frac{1}{2} (\mathbf{X}_k + \mathbf{X}_k^{-1} \mathbf{A}), \qquad \mathbf{X}_0 = \mathbf{A}$$

$$\lim_{k \to \infty} \mathbf{X}_k = \mathbf{A}^{\frac{1}{2}} \quad (\text{if } \max_{ij} \frac{1}{2} |1 - \lambda_i^{1/2} \lambda_j^{-1/2}| < 1)$$

Denman-Beavers

$$\mathbf{X}_{k+1} = \frac{1}{2} (\mathbf{X}_k + \mathbf{Y}_k^{-1}), \qquad \mathbf{X}_0 = \mathbf{A}$$
 $\mathbf{Y}_{k+1} = \frac{1}{2} (\mathbf{Y}_k + \mathbf{X}_k^{-1}), \qquad \mathbf{Y}_0 = \mathbf{I}$

$$\lim_{k \to \infty} \mathbf{X}_k = \mathbf{A}^{\frac{1}{2}}, \qquad \lim_{k \to \infty} \mathbf{Y}_k = \mathbf{A}^{-\frac{1}{2}}$$

Denman-Beavers

$$\mathbf{X}_{k+1} = \frac{1}{2} (\mathbf{X}_k + \mathbf{Y}_k^{-1}), \qquad \mathbf{X}_0 = \mathbf{A}$$
 $\mathbf{Y}_{k+1} = \frac{1}{2} (\mathbf{Y}_k + \mathbf{X}_k^{-1}), \qquad \mathbf{Y}_0 = \mathbf{I}$

$$\lim_{k \to \infty} \mathbf{X}_k = \mathbf{A}^{\frac{1}{2}}, \qquad \lim_{k \to \infty} \mathbf{Y}_k = \mathbf{A}^{-\frac{1}{2}}$$

Denman-Beavers

$$\mathbf{X}_{k+1} = \frac{1}{2} (\mathbf{X}_k + \mathbf{Y}_k^{-1}), \qquad \mathbf{X}_0 = \mathbf{A}$$
 $\mathbf{Y}_{k+1} = \frac{1}{2} (\mathbf{Y}_k + \mathbf{X}_k^{-1}), \qquad \mathbf{Y}_0 = \mathbf{I}$

$$\lim_{k \to \infty} \mathbf{X}_k = \mathbf{A}^{\frac{1}{2}}, \qquad \lim_{k \to \infty} \mathbf{Y}_k = \mathbf{A}^{-\frac{1}{2}}$$

• Inverse is costly. However, we expect $\mathbf{Y}_k^{-1} \simeq \mathbf{X}_k$

Denman-Beavers

$$egin{align} \mathbf{X}_{k+1} &= rac{1}{2} (\mathbf{X}_k + \mathbf{Y}_k^{-1}), & \mathbf{X}_0 &= \mathbf{A} \ \mathbf{Y}_{k+1} &= rac{1}{2} (\mathbf{Y}_k + \mathbf{X}_k^{-1}), & \mathbf{Y}_0 &= \mathbf{I} \ \end{pmatrix}$$

$$\lim_{k \to \infty} \mathbf{X}_k = \mathbf{A}^{\frac{1}{2}}, \qquad \lim_{k \to \infty} \mathbf{Y}_k = \mathbf{A}^{-\frac{1}{2}}$$

- Inverse is costly. However, we expect $\mathbf{Y}_k^{-1} \simeq \mathbf{X}_k$
 - Approximate \mathbf{Y}_k^{-1} using one Newton iteration for the inverse:

$$\mathbf{Y}_k^{-1} \simeq 2\mathbf{X}_k - \mathbf{X}_k \mathbf{Y}_k \mathbf{X}_k$$

$$(f(x) = 1/x - y, x_{n+1} = x_n - f(x)/f'(x) = x_n - \frac{1/x_n - y}{-1/x_n^2} = 2x_n - x_n^2 y)$$

Denman-Beavers

$$\mathbf{X}_{k+1} = \frac{1}{2} (\mathbf{X}_k + \mathbf{Y}_k^{-1}), \qquad \mathbf{X}_0 = \mathbf{A}$$
 $\mathbf{Y}_{k+1} = \frac{1}{2} (\mathbf{Y}_k + \mathbf{X}_k^{-1}), \qquad \mathbf{Y}_0 = \mathbf{I}$

$$\lim_{k \to \infty} \mathbf{X}_k = \mathbf{A}^{\frac{1}{2}}, \qquad \lim_{k \to \infty} \mathbf{Y}_k = \mathbf{A}^{-\frac{1}{2}}$$

- Inverse is costly. However, we expect $\mathbf{Y}_k^{-1} \simeq \mathbf{X}_k$
 - Approximate \mathbf{Y}_k^{-1} using one Newton iteration for the inverse:

$$\mathbf{Y}_k^{-1} \simeq 2\mathbf{X}_k - \mathbf{X}_k \mathbf{Y}_k \mathbf{X}_k$$

$$(f(x) = 1/x - y, x_{n+1} = x_n - f(x)/f'(x) = x_n - \frac{1/x_n - y}{-1/x_n^2} = 2x_n - x_n^2 y)$$

Denman-Beavers

$$egin{align} \mathbf{X}_{k+1} &= rac{1}{2} (\mathbf{X}_k + \mathbf{Y}_k^{-1}), & \mathbf{X}_0 &= \mathbf{A} \ \mathbf{Y}_{k+1} &= rac{1}{2} (\mathbf{Y}_k + \mathbf{X}_k^{-1}), & \mathbf{Y}_0 &= \mathbf{I} \ \end{pmatrix}$$

$$\lim_{k \to \infty} \mathbf{X}_k = \mathbf{A}^{\frac{1}{2}}, \qquad \lim_{k \to \infty} \mathbf{Y}_k = \mathbf{A}^{-\frac{1}{2}}$$

- Inverse is costly. However, we expect $\mathbf{Y}_k^{-1} \simeq \mathbf{X}_k$
 - Approximate \mathbf{Y}_k^{-1} using one Newton iteration for the inverse:

$$\mathbf{Y}_{k}^{-1} \simeq 2\mathbf{X}_{k} - \mathbf{X}_{k}\mathbf{Y}_{k}\mathbf{X}_{k}$$

$$(f(x) = 1/x - y, \quad x_{n+1} = x_{n} - f(x)/f'(x) = x_{n} - \frac{1/x_{n} - y}{-1/x^{2}} = 2x_{n} - x_{n}^{2}y)$$

• Do the same thing with $\mathbf{X}_k^{-1} \simeq \mathbf{Y}_k$: Newton-Schulz algorithm (next slide).

How to compute roots

Newton-Schulz square root iterations:

$$\mathbf{X}_{k+1} = \frac{1}{2}\mathbf{X}_k(3\mathbf{I} - \mathbf{Y}_k\mathbf{X}_k), \qquad \mathbf{X}_0 = \mathbf{A}$$
 $\mathbf{Y}_{k+1} = \frac{1}{2}(3\mathbf{I} - \mathbf{Y}_k\mathbf{X}_k)\mathbf{Y}_k, \qquad \mathbf{Y}_0 = \mathbf{I}$

How to compute roots

Newton-Schulz square root iterations:

$$\mathbf{X}_{k+1} = \frac{1}{2}\mathbf{X}_k(3\mathbf{I} - \mathbf{Y}_k\mathbf{X}_k), \qquad \mathbf{X}_0 = \mathbf{A}$$
 $\mathbf{Y}_{k+1} = \frac{1}{2}(3\mathbf{I} - \mathbf{Y}_k\mathbf{X}_k)\mathbf{Y}_k, \qquad \mathbf{Y}_0 = \mathbf{I}$

Prop. [Higham'08]

If
$$\|\mathbf{I} - \mathbf{A}\| < 1$$
, $\lim_{k \to \infty} \mathbf{X}_k = \mathbf{A}^{\frac{1}{2}}$, $\lim_{k \to \infty} \mathbf{Y}_k = \mathbf{A}^{-\frac{1}{2}}$

with quadratic convergence.

How to compute roots

Newton-Schulz square root iterations:

$$\mathbf{X}_{k+1} = \frac{1}{2}\mathbf{X}_k(3\mathbf{I} - \mathbf{Y}_k\mathbf{X}_k), \qquad \mathbf{X}_0 = \mathbf{A}$$
 $\mathbf{Y}_{k+1} = \frac{1}{2}(3\mathbf{I} - \mathbf{Y}_k\mathbf{X}_k)\mathbf{Y}_k, \qquad \mathbf{Y}_0 = \mathbf{I}$

Prop. [Higham'08]

If
$$\|\mathbf{I} - \mathbf{A}\| < 1$$
, $\lim_{k \to \infty} \mathbf{X}_k = \mathbf{A}^{\frac{1}{2}}$, $\lim_{k \to \infty} \mathbf{Y}_k = \mathbf{A}^{-\frac{1}{2}}$

with quadratic convergence.

- GPU friendly (batch matrix-matrix multiplications)
- Gives simultaneously the square root and its inverse

Issues

$$\mathfrak{B}^{2}(\mathbf{A}, \mathbf{B}) \stackrel{\text{def}}{=} \operatorname{Tr} \mathbf{A} + \operatorname{Tr} \mathbf{B} - 2\operatorname{Tr} (\mathbf{A}^{\frac{1}{2}} \mathbf{B} \mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}}$$
$$= \operatorname{Tr} \mathbf{A} + \operatorname{Tr} \mathbf{B} - 2\operatorname{Tr} (\mathbf{A} \mathbf{B})^{\frac{1}{2}}$$

- 1. How to compute matrix roots (in a scalable way)?
- 2. How to compute gradients?
- 3. Can I avoid projections on the PSD cone?

Option 1: Automatic differentiation

- Has the same cost as computing $\mathfrak{B}^2(\mathbf{A}, \mathbf{B})$
- Gives the exact gradient of the approximated distance

$$\nabla_{\mathbf{A}}\mathfrak{B}^2(\mathbf{A},\mathbf{B}) = \mathbf{I} - \mathbf{T}^{\mathbf{A}\mathbf{B}}, \qquad \mathbf{T}^{\mathbf{A}\mathbf{B}} = \mathbf{A}^{-\frac{1}{2}}(\mathbf{A}^{\frac{1}{2}}\mathbf{B}\mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}}\mathbf{A}^{-\frac{1}{2}}$$

$$abla_{\mathbf{A}} \mathfrak{B}^{2}(\mathbf{A}, \mathbf{B}) = \mathbf{I} - \mathbf{T}^{\mathbf{A}\mathbf{B}}, \qquad \mathbf{T}^{\mathbf{A}\mathbf{B}} = \mathbf{A}^{-\frac{1}{2}} (\mathbf{A}^{\frac{1}{2}} \mathbf{B} \mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}} \mathbf{A}^{-\frac{1}{2}}$$

In most applications, we need both $\nabla_{\mathbf{A}} \mathfrak{B}^2(\mathbf{A}, \mathbf{B})$ and $\nabla_{\mathbf{B}} \mathfrak{B}^2(\mathbf{A}, \mathbf{B})$

$$\nabla_{\mathbf{A}}\mathfrak{B}^2(\mathbf{A},\mathbf{B}) = \mathbf{I} - \mathbf{T}^{\mathbf{A}\mathbf{B}}, \qquad \mathbf{T}^{\mathbf{A}\mathbf{B}} = \mathbf{A}^{-\frac{1}{2}}(\mathbf{A}^{\frac{1}{2}}\mathbf{B}\mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}}\mathbf{A}^{-\frac{1}{2}}$$

In most applications, we need both $\nabla_{\bf A} \mathfrak{B}^2({\bf A},{\bf B})$ and $\nabla_{\bf B} \mathfrak{B}^2({\bf A},{\bf B})$

Option 2: Closed form & a nice hack

•
$$\nabla_{\mathbf{A}} \mathfrak{B}^2(\mathbf{A}, \mathbf{B}) = \mathbf{I} - \mathbf{T}^{\mathbf{A}\mathbf{B}}$$
 we need $\mathbf{T}^{\mathbf{A}\mathbf{B}}$ and $\mathbf{T}^{\mathbf{B}\mathbf{A}}$

$$\nabla_{\mathbf{A}}\mathfrak{B}^{2}(\mathbf{A},\mathbf{B}) = \mathbf{I} - \mathbf{T}^{\mathbf{A}\mathbf{B}}, \qquad \mathbf{T}^{\mathbf{A}\mathbf{B}} = \mathbf{A}^{-\frac{1}{2}}(\mathbf{A}^{\frac{1}{2}}\mathbf{B}\mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}}\mathbf{A}^{-\frac{1}{2}}$$

In most applications, we need both $\nabla_{\bf A} \mathfrak{B}^2({\bf A},{\bf B})$ and $\nabla_{\bf B} \mathfrak{B}^2({\bf A},{\bf B})$

Option 2: Closed form & a nice hack

• $\nabla_{\mathbf{A}} \mathfrak{B}^2(\mathbf{A}, \mathbf{B}) = \mathbf{I} - \mathbf{T}^{\mathbf{A}\mathbf{B}}$ we need $\mathbf{T}^{\mathbf{A}\mathbf{B}}$ and $\mathbf{T}^{\mathbf{B}\mathbf{A}}$

The naive way:
$$\mathbf{T}^{AB} = \mathbf{A}^{-\frac{1}{2}} (\mathbf{A}^{\frac{1}{2}} \mathbf{B} \mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}} \mathbf{A}^{-\frac{1}{2}}, \quad \mathbf{T}^{BA} = \mathbf{B}^{-\frac{1}{2}} (\mathbf{B}^{\frac{1}{2}} \mathbf{A} \mathbf{B}^{\frac{1}{2}})^{\frac{1}{2}} \mathbf{B}^{-\frac{1}{2}}$$

We need:
$$\{A^{\frac{1}{2}}, A^{-\frac{1}{2}}\}, \{B^{\frac{1}{2}}, B^{-\frac{1}{2}}\}, \{(A^{\frac{1}{2}}BA^{\frac{1}{2}})^{\frac{1}{2}}\}, \{(B^{\frac{1}{2}}AB^{\frac{1}{2}})^{\frac{1}{2}}\}$$

4 runs of Newton-Schulz

$$abla_{\mathbf{A}} \mathfrak{B}^{2}(\mathbf{A}, \mathbf{B}) = \mathbf{I} - \mathbf{T}^{\mathbf{A}\mathbf{B}}, \qquad \mathbf{T}^{\mathbf{A}\mathbf{B}} = \mathbf{A}^{-\frac{1}{2}} (\mathbf{A}^{\frac{1}{2}} \mathbf{B} \mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}} \mathbf{A}^{-\frac{1}{2}}$$

In most applications, we need both $\nabla_{\bf A} \mathfrak{B}^2({\bf A},{\bf B})$ and $\nabla_{\bf B} \mathfrak{B}^2({\bf A},{\bf B})$

Option 2: Closed form & a nice hack

•
$$\nabla_{\mathbf{A}} \mathfrak{B}^2(\mathbf{A}, \mathbf{B}) = \mathbf{I} - \mathbf{T}^{\mathbf{A}\mathbf{B}}$$
 we need $\mathbf{T}^{\mathbf{A}\mathbf{B}}$ and $\mathbf{T}^{\mathbf{B}\mathbf{A}}$

$$abla_{\bf A} \mathfrak{B}^2({\bf A},{\bf B}) = {\bf I} - {\bf T}^{{\bf A}{\bf B}}, \qquad {\bf T}^{{\bf A}{\bf B}} = {\bf A}^{-\frac{1}{2}}({\bf A}^{\frac{1}{2}}{\bf B}{\bf A}^{\frac{1}{2}})^{\frac{1}{2}}{\bf A}^{-\frac{1}{2}}$$

In most applications, we need both $\nabla_{\bf A} \mathfrak{B}^2({\bf A},{\bf B})$ and $\nabla_{\bf B} \mathfrak{B}^2({\bf A},{\bf B})$

Option 2: Closed form & a nice hack

• $\nabla_{\mathbf{A}}\mathfrak{B}^2(\mathbf{A},\mathbf{B})=\mathbf{I}-\mathbf{T}^{\mathbf{AB}}$ we need $\mathbf{T}^{\mathbf{AB}}$ and $\mathbf{T}^{\mathbf{BA}}$

Prop.
$$\mathbf{T^{AB}} = \mathbf{A}^{-\frac{1}{2}} (\mathbf{A}^{\frac{1}{2}} \mathbf{B} \mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}} \mathbf{A}^{-\frac{1}{2}}$$
$$= \mathbf{B}^{\frac{1}{2}} (\mathbf{B}^{\frac{1}{2}} \mathbf{A} \mathbf{B}^{\frac{1}{2}})^{-\frac{1}{2}} \mathbf{B}^{\frac{1}{2}}$$

$$abla_{\mathbf{A}} \mathfrak{B}^{2}(\mathbf{A}, \mathbf{B}) = \mathbf{I} - \mathbf{T}^{\mathbf{A}\mathbf{B}}, \qquad \mathbf{T}^{\mathbf{A}\mathbf{B}} = \mathbf{A}^{-\frac{1}{2}} (\mathbf{A}^{\frac{1}{2}} \mathbf{B} \mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}} \mathbf{A}^{-\frac{1}{2}}$$

In most applications, we need both $\nabla_{\bf A} \mathfrak{B}^2({\bf A},{\bf B})$ and $\nabla_{\bf B} \mathfrak{B}^2({\bf A},{\bf B})$

Option 2: Closed form & a nice hack

•
$$\nabla_{\mathbf{A}}\mathfrak{B}^2(\mathbf{A},\mathbf{B})=\mathbf{I}-\mathbf{T}^{\mathbf{AB}}$$
 we need $\mathbf{T}^{\mathbf{AB}}$ and $\mathbf{T}^{\mathbf{BA}}$

$$\nabla_{\mathbf{A}} \mathfrak{B}^{2}(\mathbf{A}, \mathbf{B}) = \mathbf{I} - \mathbf{T}^{\mathbf{A}\mathbf{B}}, \qquad \mathbf{T}^{\mathbf{A}\mathbf{B}} = \mathbf{A}^{-\frac{1}{2}} (\mathbf{A}^{\frac{1}{2}} \mathbf{B} \mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}} \mathbf{A}^{-\frac{1}{2}}$$

In most applications, we need both $\nabla_{\bf A} \mathfrak{B}^2({\bf A},{\bf B})$ and $\nabla_{\bf B} \mathfrak{B}^2({\bf A},{\bf B})$

Option 2: Closed form & a nice hack

• $\nabla_{\mathbf{A}} \mathfrak{B}^2(\mathbf{A}, \mathbf{B}) = \mathbf{I} - \mathbf{T}^{\mathbf{A}\mathbf{B}}$ we need $\mathbf{T}^{\mathbf{A}\mathbf{B}}$ and $\mathbf{T}^{\mathbf{B}\mathbf{A}}$

The better way:
$$\mathbf{T}^{AB} = \mathbf{A}^{-\frac{1}{2}} (\mathbf{A}^{\frac{1}{2}} \mathbf{B} \mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}} \mathbf{A}^{-\frac{1}{2}}, \quad \mathbf{T}^{BA} = \mathbf{A}^{\frac{1}{2}} (\mathbf{A}^{\frac{1}{2}} \mathbf{B} \mathbf{A}^{\frac{1}{2}})^{-\frac{1}{2}} \mathbf{A}^{\frac{1}{2}} = (\mathbf{T}^{AB})^{-1}$$

We need:
$$\{A^{\frac{1}{2}}, A^{-\frac{1}{2}}\}, \{(A^{\frac{1}{2}}BA^{\frac{1}{2}})^{\frac{1}{2}}, (A^{\frac{1}{2}}BA^{\frac{1}{2}})^{-\frac{1}{2}}\}$$

2 runs of Newton-Schulz

$$\nabla_{\mathbf{A}} \mathfrak{B}^{2}(\mathbf{A}, \mathbf{B}) = \mathbf{I} - \mathbf{T}^{\mathbf{A}\mathbf{B}}, \qquad \mathbf{T}^{\mathbf{A}\mathbf{B}} = \mathbf{A}^{-\frac{1}{2}} (\mathbf{A}^{\frac{1}{2}} \mathbf{B} \mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}} \mathbf{A}^{-\frac{1}{2}}$$

In most applications, we need both $\nabla_{\bf A} \mathfrak{B}^2({\bf A},{\bf B})$ and $\nabla_{\bf B} \mathfrak{B}^2({\bf A},{\bf B})$

Option 2: Closed form & a nice hack

• $\nabla_{\mathbf{A}} \mathfrak{B}^2(\mathbf{A}, \mathbf{B}) = \mathbf{I} - \mathbf{T}^{\mathbf{A}\mathbf{B}}$ we need $\mathbf{T}^{\mathbf{A}\mathbf{B}}$ and $\mathbf{T}^{\mathbf{B}\mathbf{A}}$

The better way:
$$\mathbf{T}^{AB} = \mathbf{A}^{-\frac{1}{2}} (\mathbf{A}^{\frac{1}{2}} \mathbf{B} \mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}} \mathbf{A}^{-\frac{1}{2}}, \quad \mathbf{T}^{BA} = \mathbf{A}^{\frac{1}{2}} (\mathbf{A}^{\frac{1}{2}} \mathbf{B} \mathbf{A}^{\frac{1}{2}})^{-\frac{1}{2}} \mathbf{A}^{\frac{1}{2}} = (\mathbf{T}^{AB})^{-1}$$

We need:
$$\{A^{\frac{1}{2}}, A^{-\frac{1}{2}}\}, \{(A^{\frac{1}{2}}BA^{\frac{1}{2}})^{\frac{1}{2}}, (A^{\frac{1}{2}}BA^{\frac{1}{2}})^{-\frac{1}{2}}\}$$

0 if we computed $\mathfrak{B}^2(A, \mathbf{B})$ earlier

$$\nabla_{\mathbf{A}}\mathfrak{B}^{2}(\mathbf{A},\mathbf{B}) = \mathbf{I} - \mathbf{T}^{\mathbf{A}\mathbf{B}}, \qquad \mathbf{T}^{\mathbf{A}\mathbf{B}} = \mathbf{A}^{-\frac{1}{2}}(\mathbf{A}^{\frac{1}{2}}\mathbf{B}\mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}}\mathbf{A}^{-\frac{1}{2}}$$

• [BM&Cuturi'18]

In most applications, we need both $\nabla_{\mathbf{A}} \mathfrak{B}^2(\mathbf{A}, \mathbf{B})$ and $\nabla_{\mathbf{B}} \mathfrak{B}^2(\mathbf{A}, \mathbf{B})$

Option 2: Closed form & a nice hack

• $\nabla_{\mathbf{A}}\mathfrak{B}^2(\mathbf{A},\mathbf{B})=\mathbf{I}-\mathbf{T}^{\mathbf{AB}}$ we need $\mathbf{T}^{\mathbf{AB}}$ and $\mathbf{T}^{\mathbf{BA}}$

The better way:
$$\mathbf{T}^{AB} = \mathbf{A}^{-\frac{1}{2}} (\mathbf{A}^{\frac{1}{2}} \mathbf{B} \mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}} \mathbf{A}^{-\frac{1}{2}}, \quad \mathbf{T}^{BA} = \mathbf{A}^{\frac{1}{2}} (\mathbf{A}^{\frac{1}{2}} \mathbf{B} \mathbf{A}^{\frac{1}{2}})^{-\frac{1}{2}} \mathbf{A}^{\frac{1}{2}} = (\mathbf{T}^{AB})^{-1}$$

We need:
$$\{A^{\frac{1}{2}}, A^{-\frac{1}{2}}\}, \{(A^{\frac{1}{2}}BA^{\frac{1}{2}})^{\frac{1}{2}}, (A^{\frac{1}{2}}BA^{\frac{1}{2}})^{-\frac{1}{2}}\}$$

0 if we computed $\mathfrak{B}^2(A, \mathbf{B})$ earlier

Issues

$$\mathfrak{B}^{2}(\mathbf{A}, \mathbf{B}) \stackrel{\text{def}}{=} \operatorname{Tr} \mathbf{A} + \operatorname{Tr} \mathbf{B} - 2\operatorname{Tr} (\mathbf{A}^{\frac{1}{2}} \mathbf{B} \mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}}$$
$$= \operatorname{Tr} \mathbf{A} + \operatorname{Tr} \mathbf{B} - 2\operatorname{Tr} (\mathbf{A} \mathbf{B})^{\frac{1}{2}}$$

- 1. How to compute matrix roots (in a scalable way)?
- 2. How to compute gradients?
- 3. Can I avoid projections on the PSD cone?

• $\mathbf{A} - t \nabla_{\mathbf{A}} \mathfrak{B}^2(\mathbf{A}, \mathbf{B})$ is not necessarily PSD.

- $\mathbf{A} t \nabla_{\mathbf{A}} \mathfrak{B}^2(\mathbf{A}, \mathbf{B})$ is not necessarily PSD.
- Classic workaround: $\mathbf{A} = \Pi(\mathbf{L_A}) \stackrel{\mathrm{def}}{=} \mathbf{L_A} \mathbf{L_A}^{\mathsf{T}}$. Effect on gradient methods?

$$\nabla_{\mathbf{L}_{\mathbf{A}}} \frac{1}{2} \mathfrak{B}^{2}(\mathbf{L}_{\mathbf{A}} \mathbf{L}_{\mathbf{A}}^{T}, \mathbf{B}) = (\mathbf{I} - \mathbf{T}^{\mathbf{A}\mathbf{B}}) \mathbf{L}_{\mathbf{A}}$$

- $\mathbf{A} t \nabla_{\mathbf{A}} \mathfrak{B}^2(\mathbf{A}, \mathbf{B})$ is not necessarily PSD.
- Classic workaround: $\mathbf{A} = \Pi(\mathbf{L_A}) \stackrel{def}{=} \mathbf{L_A} \mathbf{L_A}^{\top}$. Effect on gradient methods?

$$\nabla_{\mathbf{L_A}} \frac{1}{2} \mathfrak{B}^2(\mathbf{L_A} \mathbf{L_A}^T, \mathbf{B}) = \left(\mathbf{I} - \mathbf{T^{AB}}\right) \mathbf{L_A}$$

• Riemannian geodesics: $C_{AB}(t) = [(1-t)\mathbf{I} - t\mathbf{T}^{AB}]\mathbf{A}[(1-t)\mathbf{I} - t\mathbf{T}^{AB}]$

 W_2 geodesic $(\mu_t)_t$ from μ_0 to μ_1 $(t \in [0,1])$ and extrapolation

- $\mathbf{A} t \nabla_{\mathbf{A}} \mathfrak{B}^2(\mathbf{A}, \mathbf{B})$ is not necessarily PSD.
- Classic workaround: $\mathbf{A} = \Pi(\mathbf{L_A}) \stackrel{\mathrm{def}}{=} \mathbf{L_A} \mathbf{L_A}^{\mathsf{T}}$. Effect on gradient methods?

$$\nabla_{\mathbf{L_A}} \frac{1}{2} \mathfrak{B}^2(\mathbf{L_A} \mathbf{L_A}^T, \mathbf{B}) = \left(\mathbf{I} - \mathbf{T^{AB}}\right) \mathbf{L_A}$$

• Riemannian geodesics: $C_{AB}(t) = [(1-t)\mathbf{I} - t\mathbf{T}^{AB}]\mathbf{A}[(1-t)\mathbf{I} - t\mathbf{T}^{AB}]$

 W_2 geodesic $(\mu_t)_t$ from μ_0 to μ_1 $(t \in [0,1])$ and extrapolation

 $\quad \text{``}\Pi(\,\cdot\,) \text{ makes } \mathfrak{B}^2 \text{ flat'':} \quad \mathbf{L}_{\mathbf{A}} - t \, \nabla_{\mathbf{L}_{\mathbf{A}}} \frac{1}{2} \mathfrak{B}^2(\mathbf{A}, \mathbf{B}) \in \Pi^{-1}\{\mathbf{C}_{\mathbf{A}\mathbf{B}}(t)\}$

- $\mathbf{A} t \nabla_{\mathbf{A}} \mathfrak{B}^2(\mathbf{A}, \mathbf{B})$ is not necessarily PSD.
- Classic workaround: $\mathbf{A} = \Pi(\mathbf{L_A}) \stackrel{\mathrm{def}}{=} \mathbf{L_A} \mathbf{L_A}^{\mathsf{T}}$. Effect on gradient methods?

$$\nabla_{\mathbf{L_A}} \frac{1}{2} \mathfrak{B}^2(\mathbf{L_A} \mathbf{L_A}^T, \mathbf{B}) = \left(\mathbf{I} - \mathbf{T^{AB}}\right) \mathbf{L_A}$$

• Riemannian geodesics: $C_{AB}(t) = [(1-t)\mathbf{I} - t\mathbf{T}^{AB}]\mathbf{A}[(1-t)\mathbf{I} - t\mathbf{T}^{AB}]$

 W_2 geodesic $(\mu_t)_t$ from μ_0 to μ_1 $(t \in [0,1])$ and extrapolation

• " $\Pi(\,\cdot\,)$ makes \mathfrak{B}^2 flat": $\mathbf{L}_{\mathbf{A}} - t \nabla_{\mathbf{L}_{\mathbf{A}}} \frac{1}{2} \mathfrak{B}^2(\mathbf{A},\mathbf{B}) \in \Pi^{-1}\{\mathbf{C}_{\mathbf{A}\mathbf{B}}(t)\}$

Extrapolation

• Riemannian geodesics: $\mathbf{C}_{AB}(t) = [(1-t)\mathbf{I} - t\mathbf{T}^{AB}]\mathbf{A}[(1-t)\mathbf{I} - t\mathbf{T}^{AB}]$

 W_2 geodesic $(\mu_t)_t$ from μ_0 to μ_1 $(t \in [0,1])$ and extrapolation

IV. Applications

Elliptical Word Embeddings

- [BM&Cuturi'18]
 - « Skipgram-like » model:
 - Sliding window of size 10, extract positive pairs $(w, c) \in \mathcal{R}$
 - Sample negative pairs $(w, c') \notin \mathcal{R}$

ALL MODELS ARE WRONG BUT SOME ARE USEFUL

ALL MODELS ARE WRONG BUT SOME ARE USEFUL

ALL MODELS ARE WRONG BUT SOME ARE USEFUL

Optimize

$$\min \sum_{(w,c) \in \mathcal{R}} \left[M - \left([\mu_w, \mu_c]_{\mathfrak{B}} - [\mu_w, \mu_{c'}]_{\mathfrak{B}} \right) \right]_+$$

where
$$[\alpha, \beta]_{\mathfrak{B}} := \langle \mathbf{a}, \mathbf{b} \rangle + \operatorname{Tr} \left(\mathbf{A}^{\frac{1}{2}} \mathbf{B} \mathbf{A}^{\frac{1}{2}} \right)^{\frac{1}{2}}$$
 is a Bures generalization of the dot product

• Trained over Wackypedia + UkWac: 3 billion tokens

Word Embeddings: visualization

Word Embeddings: Similarity Evaluation

Dataset	W2G/45/C	Ell/12/BC
SimLex	33.28	24.09
WordSim	62.52	$\boldsymbol{66.02}$
WordSim-R	69.37	71.07
WordSim-S	57.56	$\boldsymbol{60.58}$
MEN	61.5	$\boldsymbol{65.58}$
MC	79.5	65.95
RG	67.6 1	65.58
YP	20.86	$\boldsymbol{25.14}$
MT-287	$\boldsymbol{61.71}$	59.53
MT-771	58.11	56.78
RW	30.62	29.04

Spearman rank correlation with human scores Comparison with [Vilnis & McCallum'15]

Hypernymy embeddings

A is a hypernym of B if every B is an A

- Ex: 'mammal' > 'dog'
- WordNet Dataset: 743,251 relations, 82,115 distinct nouns

Comparison with [Nickel & Kiela'17]

Other applications

• Robust (min/max) estimation of inverse covariance matrices [Nguyen et al.'18]

Distributionally robust Kalhman filtering [Abadeh et al.'18]

GANs: Fréchet Inception Distance (FID) [Heusel et al.'17]

Extension to the subspace constraints: [BM&Cuturi'19]

Extensions

Subspace-Optimal Transport

Let E a subspace, $S: E \rightarrow E$ an (optimal) transport on E

Def. The class of *E*-optimal transport plans from μ to ν is

$$\Pi_E(\mu, \nu) \stackrel{def}{=} \{ \gamma \in \Pi(\mu, \nu) : \gamma_E = (\mathrm{Id}_E, S)_{\sharp} \mu_E \}$$

where
$$\mu_E \stackrel{def}{=} (p_E)_{\sharp}(\mu)$$
, $\nu_E \stackrel{def}{=} (p_E)_{\sharp}(\nu)$, $\gamma_E \stackrel{def}{=} (p_E, p_E)_{\sharp}(\gamma)$

A quick reminder

Def. Disintegration of μ on $E: (\mu_{x_E})_{x_E \in E}$ s.t.

$$\forall g \in C_b(E), x_E \to \int_{E^\perp} g \mu_{x_E}$$
 is Borel-measurable

 $\forall x_E \in E, \mu_{x_E} \text{ is supported on } \{x_E\} \times E^{\perp}$

$$\forall f \in C_b(\mathbb{R}^d), \int f d\mu = \int \left(\int f(x_E, x_{E^{\perp}}) d\mu_{x_E}(x_{E^{\perp}}) \right) d\mu_E(x_E)$$

Notation: $\mu = \mu_{x_E} \otimes \mu_E$

Degrees of freedom in $\Pi_E(\mu, \nu)$?

- γ_E is supported on $\mathcal{G}(S) \stackrel{def}{=} \{(x_E, S(x_E)) : x_E \in E\}$
- \implies γ is fully characterised by its disintegrations $\gamma_{(x_E,S(x_E))}, x_E \in E$

Extend γ_E with independent couplings $\mu_{x_E} \otimes \nu_{S(x_E)}$

Extend γ_E with independent couplings $\mu_{x_E} \otimes \nu_{S(x_E)}$

Def. Monge-Independent (MI) transport plan:

$$\pi_{\mathbf{MI}}(\mu, \nu) \stackrel{def}{=} (\mu_{x_E} \otimes \nu_{S(x_E)}) \otimes (\mathrm{Id}_E, S)_{\sharp} \mu_E$$

where $\mu_E \stackrel{def}{=} (p_E)_{\sharp}(\mu)$, $\nu_E \stackrel{def}{=} (p_E)_{\sharp}(\nu)$, S Monge map from μ_E to $\nu_E, \gamma_E = (\mathrm{Id}_E, S)_{\sharp}\mu_E$

Extend γ_E with independent couplings $\mu_{x_E} \otimes \nu_{S(x_E)}$

Def. Monge-Independent (MI) transport plan:

$$\pi_{\mathbf{MI}}(\mu, \nu) \stackrel{def}{=} (\mu_{x_E} \otimes \nu_{S(x_E)}) \otimes (\mathrm{Id}_E, S)_{\sharp} \mu_E$$

where $\mu_E \stackrel{def}{=} (p_E)_{\sharp}(\mu)$, $\nu_E \stackrel{def}{=} (p_E)_{\sharp}(\nu)$, S Monge map from μ_E to ν_E , $\gamma_E = (\mathrm{Id}_E, S)_{\sharp}\mu_E$

Prop. Let $\mu, \nu \in P(\mathbb{R}^d)$ be a.c. and compactly supported,

 $\mu_n, \nu_n, n \geq 0$ uniform over n i.i.d samples, $\pi_n \in \Pi_E(\mu_n, \nu_n), n \geq 0$

Then $\pi_n \rightharpoonup \pi_{MI}$

Extend γ_E with independent couplings $\mu_{x_E} \otimes \nu_{S(x_E)}$

Def. Monge-Independent (MI) transport plan:

$$\pi_{\mathbf{MI}}(\mu, \nu) \stackrel{def}{=} (\mu_{x_E} \otimes \nu_{S(x_E)}) \otimes (\mathrm{Id}_E, S)_{\sharp} \mu_E$$

where $\mu_E \stackrel{def}{=} (p_E)_{\sharp}(\mu)$, $\nu_E \stackrel{def}{=} (p_E)_{\sharp}(\nu)$, S Monge map from μ_E to $\nu_E, \gamma_E = (\mathrm{Id}_E, S)_{\sharp}\mu_E$

Prop. Let $\mu, \nu \in P(\mathbb{R}^d)$ be a.c. and compactly supported,

 $\mu_n, \nu_n, n \geq 0$ uniform over n i.i.d samples, $\pi_n \in \Pi_E(\mu_n, \nu_n), n \geq 0$

Then $\pi_n \rightharpoonup \pi_{\mathbf{MI}}$

MI is naturally obtained as the limit of discrete sampling.

Monge-Knothe Transport

Extend γ_E with optimal couplings between μ_{x_E} and $\nu_{S(x_E)}$

Let $\forall x_E \in \hat{T}(x_E; \cdot) : E^{\perp} \to E^{\perp}$ be the Monge map from μ_{x_E} to $\nu_{S(E)}$

Monge-Knothe Transport

Extend γ_E with optimal couplings between μ_{χ_E} and $\nu_{S(\chi_E)}$

Let $\forall x_E \in \hat{T}(x_E; \cdot) : E^{\perp} \to E^{\perp}$ be the Monge map from μ_{x_E} to $\nu_{S(E)}$

Def. Monge-Knothe (MK) transport map:

$$T_{\mathbf{MK}}(x_E, x_{E^{\perp}}) \stackrel{def}{=} (S(x_E), \hat{T}(x_E; x_{E^{\perp}})) \in E \oplus E^{\perp}$$

Monge-Knothe Transport

Extend γ_E with optimal couplings between μ_{x_E} and $\nu_{S(x_E)}$

Let $\forall x_E \in \hat{T}(x_E; \cdot) : E^{\perp} \to E^{\perp}$ be the Monge map from μ_{x_E} to $\nu_{S(E)}$

Def. Monge-Knothe (MK) transport map:

$$T_{\mathbf{MK}}(x_E, x_{E^{\perp}}) \stackrel{def}{=} (S(x_E), \hat{T}(x_E; x_{E^{\perp}})) \in E \oplus E^{\perp}$$

Prop. The Monge-Knothe plan is optimal in $\Pi_E(\mu, \nu)$, namely

$$\pi_{\mathsf{MK}} \in \arg\min_{\gamma \in \Pi_E(\underline{\mu}, \underline{\nu})} \mathbb{E}_{(\underline{X}, \underline{Y}) \sim \gamma} [\|\underline{X} - \underline{Y}\|^2]$$

where, $\pi_{\mathbf{MK}} \stackrel{def}{=} (\mathrm{Id}_{\mathbb{R}^d}, T_{\mathbf{MK}})_{\sharp} \mu$

OT for Gaussian Distributions

[Gelbrich'90]

Prop. If $\alpha, \beta \in P(\mathbb{R}^d)$ are elliptical distributions, then

$$W_2^2(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \|\mathbf{m}_{\boldsymbol{\alpha}} - \mathbf{m}_{\boldsymbol{\beta}}\|_2^2 + \mathfrak{B}^2(\text{var}\boldsymbol{\alpha}, \text{var}\boldsymbol{\beta})$$

$$\mathfrak{B}^{2}(\mathbf{A}, \mathbf{B}) \stackrel{\text{def}}{=} \operatorname{Tr}(\mathbf{A} + \mathbf{B} - 2(\mathbf{A}^{\frac{1}{2}}\mathbf{B}\mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}})$$
 is the (squared) *Bures* distance

OT for Gaussian Distributions

[Gelbrich'90]

Prop. If $\alpha, \beta \in P(\mathbb{R}^d)$ are elliptical distributions, then

$$W_2^2(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \|\mathbf{m}_{\boldsymbol{\alpha}} - \mathbf{m}_{\boldsymbol{\beta}}\|_2^2 + \mathfrak{B}^2(\text{var}\boldsymbol{\alpha}, \text{var}\boldsymbol{\beta})$$

$$\mathfrak{B}^{2}(\mathbf{A}, \mathbf{B}) \stackrel{\text{def}}{=} \operatorname{Tr}(\mathbf{A} + \mathbf{B} - 2(\mathbf{A}^{\frac{1}{2}}\mathbf{B}\mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}})$$
 is the (squared) *Bures* distance

Prop. If $\alpha, \beta \in P(\mathbb{R}^d)$ are elliptical distributions with $var\alpha = A$, $var\beta = B$, then

$$T(\mathbf{x}) = \mathbf{m}_{\beta} + \mathbf{T}^{\mathbf{AB}}(\mathbf{x} - \mathbf{m}_{\alpha})$$
 is the optimal Monge map

where $T^{AB} \stackrel{\text{def}}{=} A^{-\frac{1}{2}} (A^{\frac{1}{2}}BA^{\frac{1}{2}})^{\frac{1}{2}}A^{-\frac{1}{2}}$ is such that $T^{AB}AT^{AB} = B$ and $T^{AB} \in PSD$

Monge-Independent: Gaussian Distributions

From now on: $\mu = \mathcal{N}(0_d, \mathbf{A}), \ \nu = \mathcal{N}(0_d, \mathbf{B})$

$$\mathbf{A} = \begin{pmatrix} \mathbf{A}_{E} & \mathbf{A}_{EE^{\perp}} \\ \mathbf{A}_{EE^{\perp}}^{\mathsf{T}} & \mathbf{A}_{E^{\perp}} \end{pmatrix}, \qquad \mathbf{B} = \begin{pmatrix} \mathbf{B}_{E} & \mathbf{B}_{EE^{\perp}} \\ \mathbf{B}_{EE^{\perp}}^{\mathsf{T}} & \mathbf{B}_{E^{\perp}} \end{pmatrix}$$

 $(\mathbf{V}_E \ \mathbf{V}_{E^{\perp}})$ orthonormal basis of $E \oplus E^{\perp}$

Prop. Let
$$\mathbf{C} \stackrel{def}{=} \left(\mathbf{V}_{E} \mathbf{A}_{E} + \mathbf{V}_{E^{\perp}} \mathbf{A}_{EE^{\perp}}^{\top} \right) \mathbf{T}^{\mathbf{A}_{E} \mathbf{B}_{E}} \left(\mathbf{V}_{E^{\top}} + (\mathbf{B}_{E})^{-1} \mathbf{B}_{EE^{\perp}} \mathbf{V}_{E^{\perp}}^{\top} \right)$$
 and $\Sigma \stackrel{def}{=} \left(\mathbf{A} \quad \mathbf{C} \right)$

Then
$$\pi_{MK}(\mu, \nu) = \mathcal{N}(0_{2d}, \Sigma) \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d)$$

where
$$\mathbf{T}^{\mathbf{A}\mathbf{B}} \stackrel{\text{def}}{=} \mathbf{A}^{-\frac{1}{2}} (\mathbf{A}^{\frac{1}{2}} \mathbf{B} \mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}} \mathbf{A}^{-\frac{1}{2}}$$

Monge-Knothe: Gaussian Distributions

Prop.
$$\mathbf{T}_{\mathrm{MK}} = \begin{pmatrix} \mathbf{T}^{\mathbf{A}_{E}\mathbf{B}_{E}} & \mathbf{0}_{k \times (d-k)} \\ [\mathbf{B}_{EE^{\perp}}^{\mathsf{T}} (\mathbf{T}^{\mathbf{A}_{E}\mathbf{B}_{E}})^{-1} - \mathbf{T}^{(\mathbf{A}/\mathbf{A}_{E})(\mathbf{B}/\mathbf{B}_{E})} \mathbf{A}_{EE^{\perp}}^{\mathsf{T}}] (\mathbf{A}_{E})^{-1} & \mathbf{T}^{(\mathbf{A}/\mathbf{A}_{E})(\mathbf{B}/\mathbf{B}_{E})} \end{pmatrix}$$

where $\mathbf{A}/\mathbf{A}_{E} \stackrel{def}{=} \mathbf{A}_{E^{\perp}} - \mathbf{A}_{EE^{\perp}}^{\mathsf{T}} \mathbf{A}_{EE^{\perp}}^{-1} \mathbf{A}_{EE^{\perp}}$ is the Schur complement of \mathbf{A} w.r.t. \mathbf{A}_{E} and $\mathbf{T}^{\mathbf{A}\mathbf{B}} \stackrel{\text{def}}{=} \mathbf{A}^{-\frac{1}{2}} (\mathbf{A}^{\frac{1}{2}} \mathbf{B} \mathbf{A}^{\frac{1}{2}})^{\frac{1}{2}} \mathbf{A}^{-\frac{1}{2}}$

Monge interpolation

MK interpolation

Application: Semantic Mediation (NLP)

Elliptical word embeddings from [BM&MC'18]:

ullet each word is represented with a mean vector ${f m}$ and a PSD matrix \sum

Application: Semantic Mediation (NLP)

Elliptical word embeddings from [BM&MC'18]:

ullet each word is represented with a mean vector ${f m}$ and a PSD matrix ${f \Sigma}$

Semantic mediation:

• MK between words w1, w2, E = the k first directions of the SVD of context c

Application: Semantic Mediation (NLP)

Elliptical word embeddings from [BM&MC'18]:

ullet each word is represented with a mean vector ${f m}$ and a PSD matrix \sum

Semantic mediation:

• MK between words w1, w2, E = the k first directions of the SVD of context c

Influence of context *c* on the nearest neighbours - Symmetric differences:

Word	Context 1	Context 2	Difference	
instrument	monitor	oboe	cathode, monitor, sampler, rca, watts, instrumentation, telescope, synthesizer, ambient	
	oboe	monitor	tuned, trombone, guitar, harmonic, octave, baritone, clarinet, saxophone, virtuoso	
windows	pc	door	netscape, installer, doubleclick, burner, installs, adapter, router, cpus	
	door	pc	screwed, recessed, rails, ceilings, tiling, upvc, profiled, roofs	
fox	media	hedgehog	Penny, quiz, Whitman, outraged, Tinker, ads, Keating, Palin, show	
	hedgehog	media	panther, reintroduced, kangaroo, Harriet, fair, hedgehog, bush, paw, bunny	