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How to compare distributions?

1. “Vertically”:

e Look at differences between densities:

pe

| p(xX)—g(x)|  or = y

e Make something useful out of them:

zlé%\/]lA d:E—/ A(x)q(z)dx| (Total variation)
Dxr,(p,v) = / log %p(w)daﬁ (Kullback-Leibler)

Dy(p,v) = /f <%> q(x)dx (f-divergences)
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How to compare distributions?

2. “Horizontally”:

e Look at distances on the supports:

. o 2
Lt [ o - T(a) Pdp(a)

Tap=vi it X~p = T(X)~v

“I pushes forward /: to 1”

“I'is a Monge map from /i to 1”
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(2-)Wasserstein Distances

e Monge version

Prop. When a Monge map 7 exists,

Wi(u,v) = inf | |lx = T(o)|I*u(dx)
Ty=v Jg




(2-)Wasserstein Distances

e Monge version

Prop. When a Monge map 7 exists,

re

Wy(u,v) = inf | |lx = T()|1u(dx)
Ty=v Jg

o Kantorovich version

Def. The 2-Wasserstein distance between ., € P(Q) is

def . i
Wi(u,v) =  inf lx — yll*dy(x, y)
}/EH(IMJ/) J(O)
I(p, ) &P eP@QxQ)|VA,BCcq, | couplings’

P(A x Q) = u(A), P(Q x B) = v(B))

“Kantorovich / transportation plans”




Monge maps: existence

Prop. For “well behaved” costs ¢, if p has
a density then an optimal Monge map 1™ be-
tween p and v must exist.




Monge maps: existence

Prop. For “well behaved” costs ¢, if p has
a density then an optimal Monge map 1™ be-
tween p and v must exist.

e Link between Monge maps and Kantorovitch plans:

7* — (Idv T*)ﬁ:u
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How to compute Wasserstein distances?

e Discrete/Discrete:
e LP with O(n’ log n) complexity using network simplex

e Better with (entropic) regularization [Cuturi’13, Genevay et al.’16, Altschuler et al.’17...]

e Discrete/Continous:

e Ok-ish... (Laguerre tesselations)

e Continuous/Continous: ?

e Closed form: elliptical distributions (next slides)



ll. The Wasserstein-
Bures Distance



Elliptical Distributions

« Def. » Probability measures with densities

1
Jx) = 5 h((x=m)' C~'(x—m))

where [ Ax]P)dx =1, CeS’
Rd

Examples:
e Multivariate normal distributions

e Elliptical uniform distributions
e (Multivariate) t-Student...
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OT for Elliptical Distributions

[Gelbrich’90]

Prop. If o, § € P(RY) are elliptical distributions (from the same family), then
2 2 2
W5 (o, f) = ||lm,, — mﬂll2 + B“(cova, cov))

def

1 1 1
%Q(A, B) = TrA + TrB — 2Tr(A2BA2)2 is the (squared) Bures distance
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OT for Elliptical Distributions

[Gelbrich’90]

Prop. If o, § € P(RY) are elliptical distributions (from the same family), then
2 2 2
W5 (o, f) = ||lm,, — mﬁll2 + B“(cova, cov))

def

1 1 1
%2(A, B) = TrA + TrB — 2Tr(A2BA2)2 is the (squared) Bures distance

Prop. If o, § € P(RY) are elliptical distributions with cova = A, covj3 = B, then

T(x) = m; + TAB(x — m,) is the optimal Monge map

1 1 1 1 1
where TAB T A"2(A2BA2)2A72 iss.t. TABAT*P = B
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A lower bound

e What if , [/ are not elliptical?
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A lower bound

e What if o, / are not elliptical?

Prop. Wasserstein-Bures is a lower bound of Wasserstein.

sz(a, f) = |lm, — mﬁllg + B%(cova, covp)

def

1 11
B?(A,B) = TrA + TrB — 2Tr(A2BA?2)2 is the (squared) Bures distance
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A Lemma

def

1 1 1
B4(A,B) = TrA + TrB — 2Tr(A2BA2)2

Lemma. [Bhatia et al.'17]

def L 11
F(A,B) ¥ Tr(A2BA2)2
(A X
= max{trX : (or 5 ) > 0}
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Lower bound

Prop.
W3 (o, ) = |Ilm, — myl|3 + B*(cova, covp)
with B2A.B) € TrA+TrB—2F(A.B)  F(A.B) = max{tX : (;2 ’é) > 0)
Proof.

(centered case)
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Lower bound

Prop.

sz(a, $) > ||lm, — mﬁ||§ + B?(cova, cov/)

& TrA+TrB—2F(A,B) F(A,B) = max{trX : (A X) > 0}

X' B

with B2(A,B)

def : . 5
Proof. W2 ) = min E N X _V
(centered case) 2 ('u7 ) ~eTI(p,v) (X,Y )~y [H H }

=TrA +TrB — 2 max Tr|Cov,(X,Y)]
yeIl(u,v)
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Lower bound

Prop.
W3 (o, ) = |Ilm, — myl|3 + B*(cova, covp)
with B2(A,B) £ TrA+TrB—2F(A,B)  F(A.B) = max{trX : (5 %) 20
Proof. W5 (11, v) = min (XY )~y X = YHZ}
(centered case) yeIl(p,v)
=TrA +TrB — 2 max Tr|Cov,(X,Y)]
yeIl(1,v)
A Cov~ (X,Y)
But v € II(u,v) = cov(y) = (CO%(X’YF 5 ) > 0
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Lower bound

Prop.
W3 (o, ) = |Ilm, — myl|3 + B*(cova, covp)
with B2A.B) € TrA+TrB—2F(A.B)  F(A.B) = max{tX : (;2 ’é) > 0)
2 def : . 9
Proof. W2 (,u, V) — min ‘L(X,Y)Ny [HX o YH }

(centered case) yeIl(p,v)
=TrA +TrB — 2 max Tr|Cov,(X,Y)]

yeIl(p,v)
A Cov~ (XY
But v € II(u,v) = cov(y) = (CO%(X’YF ”](3 )> > 0

Hence

Vy e Il(p,v), Tr|Cov,(X,Y)] < F(A,B)

15



How tight is this bound?

 Q:Is there an equality case?

e Q: (Matching) upper bound?
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How tight is this bound?

 Q:Is there an equality case?

e A: Yes —> Elliptical distributions

e Q: (Matching) upper bound?

e A:... (independent coupling)

W5 (1,v) < lmy, —m,[j3 + TrA + TrB
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Equality Case

Lemma. [Bhatia et al.’17]

1
arg max{trX : (;‘T )é) >0} =(AB)2 = AT"P

Y, i, U suchthat Cov, (X,Y) = AT*P 2
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Equality Case

Lemma. [Bhatia et al.’17]

1
arg max{trX : (;‘T )é) >0} =(AB)2 = AT"P

Y, i, U suchthat Cov, (X,Y) = AT*P 2

rklcov(v)] = rk (TA*A];A A'%AB) =d (< 2d)
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Equality Case

Lemma. [Bhatia et al.’17]

1
arg max{trX : (XT ) >0} =(AB)2 = AT"P

Y, I, U such that C’()v,y (X, Y) — ATAB »
rk|cov(7y)] = rk ( ATAB) =d (< 2d)

TABA B

e yis the law of (X, Y) with X ~ 11, Y ~ vand Y = TABX,
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Equality Case

Lemma. [Bhatia et al.’17]

1
arg max{trX : (XT ) >0} =(AB)2 = AT"P

Y, i, U suchthat Cov, (X,Y) = AT*P 2

rk|cov(v)| = rk (TABA Al];AB) =d (< 2d)

e yis the law of (X, Y) with X ~ 11, Y ~ vand Y = TABX,

o Implies v = (TAB)ﬂ,u and T*PATAB = B (Riccati equation).
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Equality Case

Lemma. [Bhatia et al.’17]

1
arg max{trX : (XT ) >0} =(AB)2 = AT"P

Y, i, U suchthat Cov, (X,Y) = AT*P 2

rk|cov(v)| = rk (TABA Al];AB) =d (< 2d)

e yis the law of (X, Y) with X ~ 11, Y ~ vand Y = TABX,

o Implies v = (TAB)ﬂ,u and T*PATAB = B (Riccati equation).
e e.g. i, U are from the same elliptical family.

17




Elliptical Distributions

« Def. » Probability measures with densities

1
Jx) = S h((x=m)' C~'(x—m))

where [ Ax]P)dx =1, CeS’
Rd

Examples:

 Multivariate normal distributions
e Elliptical uniform distributions
e (Multivariate) t-Student...

18



lll. Working with the
Bures distance



Issues

def

1 1 1
B4(A,B) = TrA + TrB — 2Tr(A2BA2)2

1
= TrA +TrB — 2Tr(AB)2

1. How to compute matrix roots (in a scalable way)?
2. How to compute gradients?

3. Can | avoid projections on the PSD cone?



How (not) to compute roots?

def

1 1 1
B2(A,B) = TrA + TrB — 2Tr(A2BA2)2



How (not) to compute roots?

def

1 1 1
B2(A,B) = TrA + TrB — 2Tr(A2BA2)2

e Option 1: SVD

e O(n?) complexity

e Batched version?
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How (not) to compute roots?

def

1 1 1
B2(A,B) = TrA + TrB — 2Tr(A2BA2)2

e Option 2: lterations? e.g.

1
e Babylonian algorithm Xpa1 = §(Xk + X;lA), Xop=A

1
lim Xp = A2 (if max |1 —\/°A7"?% < 1)

k— o0 17



How (not) to compute roots?

1
B2(A,B) % TrA + TrB — 2Tr(AZBA2)2

e Option 2: lterations? e.g.

1
e Babylonian algorithm Xpa1 = §(Xk + X,;lA), Xop=A

1
lim Xy = A2 (if maxz|1— )\1/2)\_1/2] < 1)

k— o0 17

1

e Denman-Beavers Xk—l—l — §(Xk + Yk_l), X = A
1 _
Yig1 = §(Yk+Xk1)a Yo =1
1 1
Iim X, = A2, lim Y, = A 2



From DB to Newton-Schulz

e Denman-Beavers Xk—l—l — %(Xk -+ Yk_l), X() = A

1 _
Y = 5(YVe + X, D, Yo=1

1 1
lim Xk :Aﬁ, lim Yk = A2

k— 00 k— 00
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e Inverse is costly. However, we expect Y ! ~ Xk



From DB to Newton-Schulz

1

e Denman-Beavers Xk—l—l — §(Xk. -+ Yk_l), X() = A
1 _
Yip1 = §(Yk+Xk1)a Yo =1
1 1
Iim X, = A2, lim Y, = A 2
k— 00 k— o0

e Inverse is costly. However, we expect Y ! ~ Xk

e Approximate Y,:l using one Newton iteration for the inverse:

Yk_l ~ 2Xk — XkYka




From DB to Newton-Schulz

1

e Denman-Beavers Xk—l—l — §(Xk. -+ Yk_ll), X() = A
1 _
Yip1 = §(Yk+Xk1)a Yo =1
1 1
Iim X, = A2, lim Y, = A 2
k— 00 k— o0

e Inverse is costly. However, we expect Y ! ~ Xk

1

e Approximate Y,: using one Newton iteration for the inverse:

Yk_l ~ 2Xk — XkYka




From DB to Newton-Schulz

e Denman-Beavers Xk—l—l — %(Xk -+ Yk_ll), X() = A
1 _
Yip1 = §(Yk+Xk1)a Yo =1
1 1
Iim X, = A2, lim Y, = A 2
k— 00 k— o0

e Inverse is costly. However, we expect Y ! ~ Xk

1

e Approximate Y,: using one Newton iteration for the inverse:

(@) =1/2 =y, wnp = 20— [@)/ (@) = 00 = L7757 = 20— by

« Do the same thing with X, ! ~ Y, : Newton-Schulz algorithm (next slide).



How to compute

e Newton-Schulz square root iterations:

X1

1
§Xk(31 — Y. X)),

1
5(31 — Y. X5)Yg,

23

Iroots
Xg=A
Yo=1



How to compute roots

e Newton-Schulz square root iterations:

1
Xir1 = 5 X8I - YiXp),  Xp=A
1
Yie = 5(1- VX)) Yy, Yo=1I
Prop. [Higham’08]
1 1
Iif |[I-All <1, lim X, = A2, lim Y, = A" 2
k— oo k— oo

with quadratic convergence.

23




How to compute roots

e Newton-Schulz square root iterations:

1
SXe(BI-YiXy),  Xo=A

1
Yiir = 531 -YiXp)Yr,  Yo=1

X1

Prop. [Higham’08]

1 1
If [I-Al| <1, lim X, = A2, lim Y, = A 2
k— oo k— oo

with quadratic convergence.

* GPU friendly (batch matrix-matrix multiplications)

e Gives simultaneously the square root and its inverse

23



Issues

def

1 1 1
B4(A,B) = TrA + TrB — 2Tr(A2BA2)2

1
= TrA +TrB — 2Tr(AB)2

1. How to compute matrix roots (in a scalable way)?
2. How to compute gradients?

3. Can | avoid projections on the PSD cone?



How to compute the Bures Gradient?
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How to compute the Bures Gradient?

Option 1: Automatic differentiation
e Has the same cost as computing B*(A,B)

 Gives the exact gradient of the approximated distance

25



How to compute the Bures Gradient?
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How to compute the Bures Gradient?

1 1 1 1 1
Va®B%(A,B)=I-TAB  TAB - A"3(AIBA2)2A72
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How to compute the Bures Gradient?

1 1 1 1 1
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In most applications, we need both V,B%(A, B) and V;B(A, B)
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How to compute the Bures Gradient?

1 1 1 1 1
Va®B%(A,B)=I-TAB  TAB - A"3(AIBA2)2A72

In most applications, we need both V,B%(A, B) and V;B(A, B)

Option 2: Closed form & a nice hack
¢ V,B*A,B)=1-T"P |::> we need TP and T

| | 1 1 1 1 1 1 1 |
The naive way: T*E = A"2(A2BA2)2A 2, TBPA=B 2(B2AB2)2B 2

1 1 1 1 1 1 1 1 1 1
We need: {A2,A 2}, {B2,B 2}, {(A2BA2)2}, {(B2AB2)2}

4 runs of Newton-Schulz
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VaB%(A,B)=1-TAB  TAB = A"3(A2BAZ)ZA 2
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Option 2: Closed form & a nice hack

V.B%(A,B)=1-TAB |::> we need TP and T®4
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How to compute the Bures Gradient?

1 1 1 1 1
VaB%(A,B)=1-TAB  TAB = A"3(A2BAZ)ZA 2

In most applications, we need both V,B%(A, B) and V;B(A, B)

Option 2: Closed form & a nice hack

V.B%(A,B)=1-TAB |::> we need TP and T®4

Prop. 101 11 1
TAB = A"2(A2BA2)2A ™2
1
B 2B
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How to compute the Bures Gradient?

1 1 1 1 1
VaB%(A,B)=1-TAB  TAB = A"3(A2BAZ)ZA 2

In most applications, we need both V,B%(A, B) and V;B(A, B)

Option 2: Closed form & a nice hack

V.B%(A,B)=1-TAB |::> we need TP and T®4
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How to compute the Bures Gradient?

1 1 1 1 1
Va®B%(A,B)=I-TAB  TAB - A"3(AIBA2)2A72

In most applications, we need both V,B%(A, B) and V;B(A, B)

Option 2: Closed form & a nice hack
¢ V,B*A,B)=1-T"P |::> we need TP and T

o 111 S B S T
The better way: T*® = A" 2(A2BA2)2A 2, TBPA=A2(A2BA2) 2A2 = (T*B)"!

1 1 111 1 1 1
We need: {A2,A 2}, {(A2BA2)2,(A2BA2) 2}

2 runs of Newton-Schulz
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How to compute the Bures Gradient?

1 1 1 1 1
Va®B%(A,B)=I-TAB  TAB - A"3(AIBA2)2A72

In most applications, we need both V,B%(A, B) and V;B(A, B)

Option 2: Closed form & a nice hack
¢ V,B*A,B)=1-T"P |::> we need TP and T

o 111 S B S T
The better way: T*® = A" 2(A2BA2)2A 2, TBPA=A2(A2BA2) 2A2 = (T*B)"!

1 1 111 1 1 1
We need: {A2,A 2}, {(A2BA2)2,(A2BA2) 2}

0 if we computed B*(A,B) earlier
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How to compute the Bures Gradient?

1 1 1 1 1
Va®B%(A,B)=I-TAB  TAB - A"3(AIBA2)2A72

e [BM&Cuturi’18]
In most applications, we need both V,B%(A, B) and V;B(A, B)

Option 2: Closed form & a nice hack
¢ V,B*A,B)=1-T"P |::> we need TP and T

o 111 S B S T
The better way: T*® = A" 2(A2BA2)2A 2, TBPA=A2(A2BA2) 2A2 = (T*B)"!

1 1 111 1 1 1
We need: {A2,A 2}, {(A2BA2)2,(A2BA2) 2}

0 if we computed B*(A,B) earlier

25




Issues

def

1 1 1
B4(A,B) = TrA + TrB — 2Tr(A2BA2)2

1
= TrA +TrB — 2Tr(AB)2

1. How to compute matrix roots (in a scalable way)?
2. How to compute gradients?

3. Can | avoid projections on the PSD cone?



Can we avoid projections?

e A—1tV A%z(A, B) is not necessarily PSD.
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Can we avoid projections?

e A—1tV A%2(A, B) is not necessarily PSD.

o Classic workaround: A =TI(L,) o

ViasB%(Lala’,B)= (I-T"®)La

L,L.. Effect on gradient methods?
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Can we avoid projections?

e A—1tV A%2(A, B) is not necessarily PSD.

o Classic workaround: A =TI(L,) o

ViasB%(Lala’,B)= (I-T"®)La

L,L.. Effect on gradient methods?

* Riemannian geodesics: C,(f) = [(1 — NI — (TABIA[(1 — HI — (TP

W, geodesic (u;); from pg to py (t € [0,1]) and extrapolation
5 [ [ [ [ [ [ [ [ i\‘ ~ N X [ [ ]
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Can we avoid projections?

e A—1tV A%2(A, B) is not necessarily PSD.

o Classic workaround: A =TI(L,) o

ViasB%(Lala’,B)= (I-T"®)La

L,L.. Effect on gradient methods?

* Riemannian geodesics: C,(f) = [(1 — NI — (TABIA[(1 — HI — (TP

W, geodesic (u;); from pg to py (t € [0,1]) and extrapolation
5 [ [ [ [ [ [ [ [ i\‘ ~ N X [ [ ]

~ L
12

e “TI( - ) makes B flat”: L, — tVLA%%Z(A, B) € H_I{CAB(t)}
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Can we avoid projections?

e A—1tV A%2(A, B) is not necessarily PSD.

o Classic workaround: A =TI(L,) o

ViasB%(Lala’,B)= (I-T"®)La

L,L.. Effect on gradient methods?

* Riemannian geodesics: C,(f) = [(1 — NI — (TABIA[(1 — HI — (TP

W, geodesic (u;); from pg to py (t € [0,1]) and extrapolation
5 [ [ [ [ [ [ [ [ i\‘ ~ N X [ [ ]

e “TI( - ) makes B flat”: L, — tVLA%%Z(A, B) € H_I{CAB(t)}

- [BM&Cuturi’18]



Extrapolation

* Riemannian geodesics: C,,(7) = [(1 — I — tTAB]A[(l — I — fTAP)
)

W, geodesic (uy

¢ from pg to py (¢t € [0, 1]) and extrapolation

5

—

—
—
~ -

[

[dWa /dt|/Wa(po, pa)

©

= Mo |
Mt — K1 |
===t — U3

1
curve time
28



IV. Applications



Elliptical Word Embeddings

e [BM&Cuturi’18]

« Skipgram-like » model :

e Sliding window of size 10, extract positive pairs (w,c) € &£

ALL MODELS ARE WRONG BUT SOME ARE USEFUL
ALL MODELS ARE WRONG BUT SOME ARE USEFUL
ALL MODELS /ARE WRONG BUT SOME ARE USEFUL

e Sample negative pairs (w,c’) &€ X

e Optimize

min Z [M — ([,uw, Helg — Liys ﬂc’]%)]

(W,c)ER +

1
1 1\ 2
where [, /g := (a,b) + Tr < A2B AE) Is a Bures generalization of the dot product

e Trained over Wackypedia + UkWac : 3 billion tokens

30



Word Embeddings: visualization

1
O_
-] —
—2 —
mill= Bach
—3— mwenn classical
mokm famous
4 m@m= composer
@ man
| | | | | | |
—6 —4 -2 0 2 4 6
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Word Embeddings: Similarity Evaluation

Dataset W2G/45/C |Ell/12/BC
SimLex 33.28
WordSim 62.52
WordSim-R 69.37
WordSim-S 57.56

MEN 61.5
MC 79.5
RG 67.61
YP 20.86

M'T-287 61.71
MT-771 58.11
RW 30.62

Spearman rank correlation with human scores

Comparison with [Vilnis & McCallum’15]
32



Hypernymy embeddings

A is a hypernym of B if every B is an A
e Ex: ‘mammal’ > ‘dog’

e WordNet Dataset: 743,251 relations, 82,115 distinct nouns

1.00- — _
S
v C e -17.5
5o —— Elliptical
g --%-- Poincare  [15.0
| -
8- 0.90 .
o>
E 085 ——————————————————————————————————— x _10.0
G°
- 7.5
<
— 0.80 |
O 5.0
)
= 075 s
-1.0
5 20 40 60 80 100 120 140 160 180 200 210

# of free parameters

Comparison with [Nickel & Kiela’17]
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Other applications

 Robust (min/max) estimation of inverse covariance matrices [Nguyen et al.’18]

e Distributionally robust Kalhman filtering [Abadeh et al.’18]

e GANSs: Fréchet Inception Distance (FID) [Heusel et al.’17]

o Extension to the subspace constraints: [BM&Cuturi’19]
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Extensions



Subspace-Optimal Transport

Let E a subspace, s: E— E an (optimal) transport on E

Def. The class of E-optimal transport plans from ;. to v is

de
() € (y € v) : 7 = (Adg S) )

de de de
where 1, £ (Pe)y(1),  vg =4 (Pp)y(V), Vg 2 (pp. Pe)y(7)
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A quick reminder

Def. Disintegration of yon E: (u, ), - S.t.

Vge C(E),xp — [ gy, is Borel-measurable
EL

Vx; € E, u,_is supported on {x;} X E*

Vf € Cb(Rd)a [f dy = [ < Jf (X, xEl)dﬂxE(in)) dpg(xg)

Notation: u=p, ® ug
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Degrees of treedom 1in (4, v)?

® V£ is supported on 2(S) € {(x. S(y) : x5 € E}

—> ¥ is fully characterised by its disintegrations ¥, su,)-*e € E

I
|
|
|
I
|
i
i
n
\
1
1
|
I
|

{xe} X E  {S(xe)} X E*
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Monge-Independent Transport

o Extend Yg with independent couplings /., & Vg,
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Monge-Independent Transport

o Extend Yg with independent couplings /., & Vg,

Def. Monge-Independent (Ml) transport plan:

de
M1 ) =) (ﬂxE X VS(xE)) ® (Idg, S )iHE

def def
where 1z = (pp)y(1). vg = (Pp)y(v), S Monge map from i to vy, vz = (Idg, S)iip
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Monge-Independent Transport

o Extend Yg with independent couplings /., & Vg,

Def. Monge-Independent (Ml) transport plan:

de
M1 ) =) (ﬂxE X VS(xE)) ® (Idg, S )iHE

def def
where 1z = (pp)y(1). vg = (Pp)y(v), S Monge map from i to vy, vz = (Idg, S)iip

Prop. Let 1, € P(RY) be a.c. and compactly supported,

u,, v, n > 0 uniform over n i.i.d samples, =, € I1.(x,,v,),n >0

Then T, — TMI
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Monge-Independent Transport

o Extend Yg with independent couplings /., & Vg,

Def. Monge-Independent (Ml) transport plan:

de
M1 ) =) (ﬂxE X VS(xE)) ® (Idg, S )iHE

def def
where 1z = (pp)y(1). vg = (Pp)y(v), S Monge map from i to vy, vz = (Idg, S)iip

Prop. Let 1, € P(RY) be a.c. and compactly supported,

u,, v, n > 0 uniform over n i.i.d samples, =, € I1.(x,,v,),n >0

Then T, — TMI

MI is naturally obtained as the limit of discrete sampling.
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Monge-Knothe Transport

« Extend YE with optimal couplings between y, and vy, ,

Let Vx. € T(x;; - ) : Et - E* be the Monge map from i, 10 vy,

40



Monge-Knothe Transport

« Extend YE with optimal couplings between y, and vy, ,

Let Vx. € T(x;; - ) : Et - E* be the Monge map from i, 10 vy,

Def. Monge-Knothe (MK) transport map:

de A
TMK (g XgL) = (SCep), T(xp; x51) € E® E*+
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Monge-Knothe Transport

« Extend YE with optimal couplings between y, and vy, ,

Let Vx. € T(x;; - ) : Et - E* be the Monge map from i, 10 vy,

Def. Monge-Knothe (MK) transport map:

de A
TMK (g XgL) = (SCep), T(xp; x51) € E® E*+

Prop. The Monge-Knothe plan is optimal in I1.(x, v), namely

MK € argmin k) [ X - Y|I%]
}/EHE(M,V)

where, Tpk e (Idgs TMK )
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OT for Gaussian Distributions

[Gelbrich’90]

Prop. If o, § € P(RY) are elliptical distributions, then

sz(a, f)=|m, — mﬂ||% + B%(vara, varff)

1 11
B2(A,B) = Tr(A + B—2(A2BA2)2) is the (squared) Bures distance
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OT for Gaussian Distributions

[Gelbrich’90]

Prop. If o, § € P(RY) are elliptical distributions, then

sz(a, f)=|m, — mﬁ||% + B%(vara, varff)

1 11
B2(A,B) = Tr(A + B—2(A2BA2)2) is the (squared) Bures distance

Prop. If o, § € P(RY) are elliptical distributions with vara = A, var = B, then

T(x) = my + TAB(X —1Im,) is the optimal Monge map

1 1 I 1 1
where TAB T A™2(A2BA2)2A" 2 is such that T**AT*® = B and T*® € PSD
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Monge-Independent: Gaussian Distributions

— N

From now on: x=.4(,A), v=4(0,B)
Ar Apps B. B,.
A= TE EE | B — E EE
AEEJ_ AEJ_ BEEJ_ BEJ_

(Ve Vz) orthonormal basis of E® E*

: g (A C
Prop. LetC¥ (ViA;+ VoAL ) TA®: (Vyr + (B,) By V],) and = < <cT B)

Then ), (11,v) = /(0,,, ) € P(RYx RY)

1 1 1 1 1
where T*B € A"2(A2BA2)2A™2
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Monge-Knothe: Gaussian Distributions

A.B
| R Ox(a—io) )

BT@EL(TAEBE)_l _ TA/AR)(B/Bg) AEEL] (Ap)~! T(A/Ap)(B/B)

Prop. Tyx= <[

1 1 11 1
where A/A, € A, — AT AZ'A g, is the Schur complement of A w.r.t. A, and T*® € A"2(A2BA2)2A 2

Ho

= (D) (0 @ ©u1 Monge interpolation

E
Ho

> (2 @ @ th MK interpolation
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Application: Semantic Mediation (NLP)

Elliptical word embeddings from [BM&MC’18]:

® cach word is represented with a mean vector M and a PSD matrix Z
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Application: Semantic Mediation (NLP)

Elliptical word embeddings from [BM&MC’18]:

® cach word is represented with a mean vector M and a PSD matrix Z

Semantic mediation:

* MK between words wl, w2, E = the k first directions of the SVD of context ¢
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Application: Semantic Mediation (NLP)

Elliptical word embeddings from [BM&MC’18]:

® cach word is represented with a mean vector M and a PSD matrix Z

Semantic mediation:

* MK between words wl, w2, E = the k first directions of the SVD of context ¢

Intluence of context ¢ on the nearest neighbours - Symmetric differences:

Word Context 1  Context 2 Difference
instrument  monitor oboe cathode, monitor, sampler, rca, watts, instrumentation, telescope, synthesizer, ambient
oboe monitor  tuned, trombone, guitar, harmonic, octave, baritone, clarinet, saxophone, virtuoso
windows pc door netscape, installer, doubleclick, burner, installs, adapter, router, cpus
door pc screwed, recessed, rails, ceilings, tiling, upvce, profiled, roofs
fox media, hedgehog Penny, quiz, Whitman, outraged, Tinker, ads, Keating, Palin, show

hedgehog media panther, reintroduced, kangaroo, Harriet, fair, hedgehog, bush, paw, bunny

44



